

Our Curriculum Intent

At Walthamstow Academy, we passionately believe that studying science is a fundamental part of a broad and full education. We believe this because:

- 1. Every one of our students has the right and the responsibility to become a scientifically informed citizen. Scientifically informed citizens are critical thinkers, they understand how to interpret data and where to seek evidence for scientific statements; this means they are equipped to be successful in the modern world.
- 2. Every one of our students has the right to understand how the natural world works, from their own bodies to the life cycle of stars. All of our students should understand the basic principles that underpin biology, chemistry and physics so that they can place their own experiences in the context of scientific knowledge. Knowing why you have your father's nose shape, or what you are seeing when you stare at the night's sky, makes for a fuller and richer experience of life.
- 3. The modern world cannot be fully understood without an appreciation of the special place of the scientific method in our history. To trace the path of scientific knowledge, and to understand how it was gained, is to understand much of the world we live in today. Our students learn to understand the value of doubt, as opposed to the value of faith, when seeking new knowledge.
- 4. The challenges faced by humanity have been caused to some extent by science, and can only be solved with its help. The jobs of the future will increasingly require scientific knowledge. Our curriculum ensures our students will be the scientists and engineers of tomorrow.

Curriculum Principles:

- Fundamental ideas taught across SoW students are taught the 'big ideas' in biology, chemistry and physics.
- Spiral structure students revisit the 'big ideas' through vertical concepts that increase in depth and complexity.
- Links between students make links between the 3 science disciplines and constantly review and recall prior knowledge.
- Skills interleaved knowledge skills are always taught in the context of the science being taught.

Our Curriculum Progression Model

Sequencing:

When sequencing material we aim to strike a thoughtful balance between introducing new content, emphasising links between scientific topics and pupils' need to spend time revisiting material so that they are successful. We sequence our units to introduce knowledge and new ideas in a way that begins with the simplest and builds to the more complex, including a range of vertical concepts developed over time in a variety of contexts. For example, students in year 7 starts with 7CP Particles, in which we introduce the concept of diffusion. We have placed this unit here as an understanding of particle behaviour is fundamental to all three sciences, and that movement in and out of cells requires an understanding of diffusion, which is taught in the next topic, 7BC Cells, Tissues and Organs. The idea is developed later in 9 PM Matter and will be revisited in a range of topics at Key Stage 4, including Organisation.

KS3

- At KS3 students are taught the big ideas in science, which sets the foundation for their future science education.
- As well as new content, working scientifically skills and mathematical skills are interleaved and embedded into units. For instance, the first unit in Y7 7CP
 Particles introduces graph drawing skills.

KS4

- Pre-requisite knowledge continues to be sequenced methodically at KS4. Electricity and waves is taught before electromagnetism ensuring greater understanding and providing opportunity for interleaving.
- At KS4 pupils build on knowledge and skills developed at KS3. Working scientifically skills are further developed through sequenced required practical activities in each unit.

KS5

- At KS5 students build on their foundation of scientific knowledge attained from KS3 and KS4.
- The curriculum is sequenced to allow students to deepen their understanding as topics become broader and more complex. For example, in physics Y12 students learn about Newtonian mechanics before learning about rotational mechanics in Y13.
- Where staffing allows, the KS5 curriculum is divided into sections to allow students to simultaneously learn aspects of the curriculum from subject specialists. For example, in chemistry students learn both Physics and organic chemistry.
- The scientific method is embedded throughout the KS5 curriculum. Students work towards attaining their CPAC endorsement by successfully completing 12 core practical activities. All core practicals and development of the scientific method is taught in the context of the curriculum, not as a standalone unit.

Our Curriculum Progression Model

Progression:

Progression between Key Stages

• The Science Key Stage 3 curriculum is planned on the basis that students will arrive in Year 7

having been taught the National Curriculum in their primary school.

• The Science Key Stage 3 curriculum is an essential foundation to Key Stage 4, and GCSE exams

assume knowledge of the Key Stage 3 curriculum. Therefore, all Key Stage 3 content should be taught

before starting any Key Stage 4 units.

• Throughout Key Stage 3 to we promote separate science (see below) to

higher attaining students, both as a pathway to Key Stage 5 study of science but also as an essential

aspect of a rounded intelligence for higher attaining students.

Key Stage 4 to Key Stage 5:

- As shown above in the vertical concepts grid, the KS5 curriculum builds upon the foundation of scientific knowledge students build during their studies at KS4.
- Separate science is at KS4 is promoted as the preferred route into A-level science as this course offers greater depth, breadth and complexity at KS4, bridging the gap between GCSE and A-level.
- Over the summer term and summer break between KS4 and KS5, students receive transition lessons and a transition booklet that aims to bridge the gap between GCSE and A-level sciences.

Progression beyond Walthamstow - University and Careers

The majority of our KS5 students progress into STEM related degrees, from aerospace engineering to zoology. Career opportunities open to graduates of science are vast.

Walthamstow Academy – Science Curriculum Journey

			Extra Curricular Options
Half Term	Curriculum Content	Assessment(s) (assessment title, duration and approx date)	Extra-Curricular Options (Places to visit; wider reading; clubs to join)
	riculum Overview:		Science Museum
	ents start their KS3 curriculum journey by studying the big ideas of science. The focus of KS3	· · ·	
	ding of a range of scientific ideas in biology, chemistry and physics. Year 7 begins by underst		e Natural History Museum
	ots in order to progress to the next stages in Y8 + Y9, and eventually building upon these con		
focus on w	orking scientifically and objectively and developing their scientific vocabulary. The topics stu	ıdied in Year 7 are:	London Transport Museum
	Particles		
	• Cells		
	• Energy		
	Chemical reactions		
	Reproduction and Variation		
	Forces		
	7CP Particles		STEM Club
	Students will be introduced to working scientifically and how to work safely in a		
· -	secondary science lab. They will study the first chapter of the KS3 curriculum – 7CP	7CP TOPIC TEST – 45 MINS	The Day
Year 7	Particles. They study this first because important terms such as diffusion is covered,		
HT1	which will be needed for subsequent chapters e.g. 7BC Cells.		New Scientist
	How to use basic science equipment.	KPIs	
	• 7CP – Particle model of matter.		
	How to identify variables in science.		
	7BC Cells + 7PE Energy		STEM Club
	Students will continue to develop working scientifically skills. They will study the first		
	chapter of biology in the KS3 curriculum – 7BC Cells. In which they will learn how to		The Day
	prepare slides, use microscopes and more about the systems within our body. In addition	7BC TOPIC TEST – 45 MINS 7PE TOPIC TEST – 45 MINS KPIs	,
Year 7	they will move on to 7PE – Energy, in which they cover important concepts about energy		New Scientist
HT2	transfer and conservation to using equations and developing maths skills.		
	• 7BC – Cells		
	• 7PE – Energy		
	 How to identify variables in science + develop hypothesis 		
Year 7	7BR Reproduction + Variation	MID-YEAR PPE – 60 MINS	STEM Club

HT3	Students will complete their mid year assessments consolidating the first term's topics.	7BR TOPIC TEST – 30 MINS	
	Students will then move onto learning 7BR – Reproduction + Variation, which builds upon		The Day
	key concepts and knowledge learnt from 7BC Cells. They will understand the changes that	KPIs	
	our bodies undergo and how the system works. Working scientifically skills will still be		New Scientist
	developed throughout the term. This topic sets students up for Y9 topics (Biological		
	Systems)		
	• 7BR – Reproduction + Variation		
	How to analyse data and spot anomalies		
	7CC Chemical Reactions		STEM Club
	Students will move on to 7CC Chemical Reactions and learn the importance of chemical		
	reactions, how these are used in industry and everyday life to benefit us, in addition to		The Day
	being introduced to the pH scale and where everyday substances fall within that.	7CC TOPIC TEST – 35 MINS	
Year 7	Students will also be involved in planning their own investigation on the reactions		New Scientist
HT4	between acids and alkalis and how this can benefit humans.	KPIs	
	7CC – Chemical Reactions		
	 How to use graphs to describe trends 		
	How to plan an investigation		
	7PF Forces		STEM Club
	Students will be introduced to 7PF Forces. In this topic they are introduced to the three		
Year 7	types of forces and the effect of forces. They will again be introduced to mathematical		The Day
	equations which they will have to manipulate as well as using and plotting their own	7PF TOPIC TEST – 35 MINS	
HT5	distance-time graphs. Students will revisit forces in Y9 with Forces in Motion.		New Scientist
	• 7PF – Forces	KPIs	
	 How to plot graphs, analyse data and spot trends 		
	 How to use mathematical equations 		
	8BE Ecological Relationships + Classification		STEM Club
	Students will use the start of this term to prepare for their End of Year PPE's. They will		
	experience revision lessons in which they will develop the skills for effective revision in	END OF YEAR PPE 1 – 60 MINS	The Day
Year 7	year). Post EoY exams, students will begin the Y8 curriculum, starting with 8BE –		New Scientist
HT6		8BE TOPIC TEST – 35 MINS	
	introduces students to Darwin's Theory of Evolution and how to debate within science.		
		KPIs	
	How to debate theories in science		
	 How to accurately measure and record using equipment 		
		Assessment(s)	Extra-Curricular Options
Term	Curriculum Content	(assessment title, duration and	(Places to visit; wider reading; clubs
		approx date)	to join)
		approx date)	to join)

Year 8 Curr	iculum Overview:		Science Museum
In Year 8 st deepening should be a	 udents continue to go through the KS3 schemes of work, now building upon their basic know their understanding of science in the world. Students continue to develop their experimental able to describe associated processes and key characteristics in common language and shoul within science. The topics studied in Year 8 are: Digestion The Periodic Table Light and Space Materials and the Earth Electricity and Magnetism Matter Forces in Action 	l and investigative skills. Students	Natural History Museum London Transport Museum
	8BD Digestion		STEM Club
Year 8 HT1	This unit builds on the work done in year 7 on organ systems and diffusion. It begins by establishing the components of food and the use of each within the body. Student will look at what is meant by a balanced diet and the consequences when nutritional and	8BD TOPIC TEST – 30 MINS KPIs	The Day New Scientist
	8CP The Periodic Table		STEM Club
Year 8 HT2	This unit of work begins what an element is and how elements can combine/mix to form compounds and mixtures. Some work is then done linking elements to the periodic table and their significance. Following this, compounds are studied in more detail including naming them and how to write a formula. The periodic table is then looked at in more detail starting first with the Dalton atomic model and moving on to the nuclear model	8CP TOPIC TEST – 35 MINS KPIs	The Day New Scientist
Year 8 HT3	8PL Light and Space The unit builds on work done at KS2, which should be borne in mind in terms of starting points. The unit begins by looking at light as a wave, that transfers energy and what	MID-YEAR PPE – 60 MINS 8PL TOPIC TEST – 35 MINS	STEM Club The Day
пір	happens when it meets different surfaces. The unit then moves to reflection, refraction in more detail and this offers the opportunity to look at reproducibility in data and accuracy	KPIs	New Scientist

	of measurements, before moving on to vision and problems with vision, the colours of the spectrum and how colour is seen and then how different coloured light can be produced and affects the colour of objects. The final section deals with the Earth in		
	space, the cause of seasons and the Earth's place in the universe.		
	8PL – Light and Space		
	Identifying IV, DV and CV's		
	Writing conclusions and using data to support conclusions		
	8CM Materials and the Earth		STEM Club
	The unit begins by looking at the structure of the Earth and some basic plate tectonics to		
	highlight the changing nature of the surface and how this can lead to earthquakes and		The Day
	volcanoes. The formation of the three different types of rock and their physical properties		
	is then covered, as well as fossil formation. The unit then moves on to the atmosphere,	8CM TOPIC TEST – 35 MINS	New Scientist
Year 8	how it has changed over the Earth's history and more recently, and the human impact on		
HT4	that. Finally, the properties of some of the materials made from earth's resources and	KPIs	
	recycling.		
	8CM – Materials + the Earth		
	 Read and interpret graphs and tables of secondary data 		
	Explain observations from practical work using scientific knowledge		
	8PE Electricity and Magnetism		STEM Club
	This unit begins with electricity – what it is and how current behaves in series and parallel		
	circuits. Ohm's Law is introduced in a simple way. The unit then switches to magnetism		The Day
	and then the link between the two before investigating how to make electromagnets and		
Year 8	some uses of them.	8PE TOPIC TEST – 30 MINS	New Scientist
HT5	8PE – Electricity + Magnetism	KPIs	
	 Use equipment to make measurements of current, voltage and 	KPIS	
	resistance		
	 Plot a graph and describe relationships shown 		
	 Use and manipulate equations to calculate unknown values 		
	9PM Matter + 9PF Forces in Action		STEM Club
	The matter topic build extensively on the particles (7CP) and forces and motion(7PF)	9PM TOPIC TEST	
	tonics. In this tonic students will reinforce their understanding of the narticle model	END OF YEAR PPE 1 – 60 MINS	The Day
Voor 8	kinetic theory and resultant forces. They will learn to apply these to situations revolving	END OF YEAR PPE 2 - 60 MINS	
Year 8 HT6	around pressure and diffusion. 9PF builds on forces from year 7 to look at how forces can		New Scientist
1110	cause turning effects, how this can be amplified, how forces can cause deformation and		
	what elastic deformation is, how forces are linked to energy (work done) and how	KPIs	
	machines can reduce the force needed to do a particular job. Lots of opportunity to make		
	links with real life objects (bikes, cars, screwdrivers) engineering, tools etc. There is a lot		

	of maths, although the relationships are simple, so challenge can be built by		
	rearrangement and unit changes.		
	9PM Matter + 9PF Forces in Action		
	 How models allow us to understand phenomena 		
	Writing conclusions from data collected		
Term	Curriculum Content	Assessment(s) (assessment title, duration and approx date)	Extra-Curricular Options (Places to visit; wider reading; club to join)
Year 9 Curi	iculum Overview:		Science Museum
In Year 9 st	udents continue to go through the KS3 schemes of work, now building upon their knowledge	e and concepts from the previous 2	
	urther deepening their understanding of science in the world. Students continue to develop		Natural History Museum
-	e skills. Students also prepare to begin KS4 content during the summer term. By the end of I	-	
-	oped their application skills and understanding of the key concepts in science in order to buil	-	London Transport Museum
	studied in Year 9 are:		• • • • • • • • • • • • • • • • • • • •
	• Reactivity		
	Plants and Photosynthesis		
	Energetics and Rates		
	Biological Systems and processes		
	 Sound 		
	• <i>C1: Atomic Structure and the Periodic Table</i>		
	C2: Structure and Bonding		
	9CR Reactivity		STEM Club
	The unit begins by recapping the work covered in year 8 on basic atomic structure and		
	electron configuration and then adds on neutron numbers, atomic mass and formula		The Day
	mass. The skills introduced in the first few lessons (writing ionic formulae, RFM and		
Year 9 HT1	balancing equations) are consolidated throughout the unit whilst they look at a variety of		New Scientist
	chemical reactions. The latter part of the unit introduces the reactivity series and how it	9CR TOPIC TEST	
	can be used to predict and/or explain reaction outcomes. The required practical in this		
		KPIs	
	There are many opportunities within this scheme to interleave conservation of mass ideas		
	by incorporating mass calculations that link directly to the reactions carried out.		
	9CR Reactivity		
	 Identification of hazards and risks, and suggestions for reducing risk 		
	 Method writing, including equipment names chemicals and processes 		
	9BP Plants + Photosynthesis		STEM Club
Year 9	This unit provides the foundation for work in key stage 4 on limiting factors in	9BP TOPIC TEST	
HT2	photosynthesis, energy transfer through an ecosystem and the mineral requirements of		The Day
	plants. The unit starts with exploring the structure and function of roots, with emphasis	KPIs	,

	on its adaptations. Pupils then progress on to the process of photosynthesis and its		New Scientist
	importance. This will include understanding that the carbon dioxide for photosynthesis		
	comes from the air, that chlorophyll enables a plant to utilise light in photosynthesis, the		
	role of the leaf in photosynthesis, the importance and roles of the xylem and phloem and		
	the importance of photosynthesis to humans and other animals.		
	9BP – Plants and Photosynthesis		
	 Identifying variables to change, measure and control 		
	 Describing and explaining trends in graphs and using data to illustrate 		
	points		
	9CE Energetics + Rates		STEM Club
	This topic will introduce the idea of rates and factors that affect rates for the first time.		
	How rates are measured is covered first, focusing on the element of time that is essential.		The Day
	There is a required practical, which uses the same reaction as the first lesson to avoid	MID-YEAR PPE – 60 MINS	
Voor 0	confusion and just allow the changing of concentration. The ideas of surface area and	WID-TEAR PPE - 60 WIINS	New Scientist
Year 9 HT3	catalysts are introduced. If you have time, you could also do the effect of temperature	9CE TOPIC TEST	
піз	here. The unit then covers types of reaction – endothermic, exothermic, combustion as a	SCE TOPIC TEST	
	type of oxidation reaction and thermal decomposition.	KPIs	
	9CE Energetics + Rates	NP15	
	 Scaling and plotting graphs and drawing lines of best fit 		
	Explaining choices for equipment to minimise heat loss and suggestions		
	9BB Biological Systems and Processes		STEM Club
	This unit of work begins with a recap of organizational hierarchy, with students recalling		
	the function of different organ systems. Students will then focus on the skeletal and		The Day
	muscular systems, considering how these two interact to produce movement and		
	locomotion. Students will be introduced to the concept of antagonistic muscle pairings		New Scientist
	and will investigate the forces exerted by different muscles involved in movement.		
Veer 0	Students will then examine the respiratory system, looking at the mechanism of	9BB TOPIC TEST	
Year 9	breathing, lung volumes and the role of diffusion in gas exchange. The impacts of drugs		
HT4	and exercise on the respiratory and other systems will be explored. Finally, students will	KPIs	
	consider the basis of life by investigating the structure and function of DNA. Through this		
	module students will be introduced to key biological concepts such as DNA as a blueprint		
	for life and its link to cells, tissues, organs, organ systems and organisms.		
	 9BB – Biological Systems and Processes 		
	Calculating means, spotting anomalies		
	 Displaying secondary data appropriately and the analysis of it 		
Vec: 0	9PS Sound	9PS TOPIC TEST	STEM Club
Year 9	This unit builds on the work in year 8 on light waves and makes several links to it. The unit		
HT5	begins by reviewing the work from year 8 and establishing the different types of wave.	KPIs	The Day

Waves in matter are introduced and water and sound waves are used as examples of this. The idea of absorption of energy leading to an increase in the thermal store of a substance is revisited here too. The unit then looks at the speed of sound in different media and is a chance to revisit accurate language around particle theory. Then, uses of ultrasound and how microphones and loudspeakers work. New Scientist 9PS – Sound Identifying sources of error Using SI units for wavelength, frequency, and speed Calculating means and uncertainties Calculating means and uncertainties New Scientist	
substance is revisited here too. The unit then looks at the speed of sound in different media and is a chance to revisit accurate language around particle theory. Then, uses of ultrasound and how microphones and loudspeakers work. 9PS – Sound Identifying sources of error Using SI units for wavelength, frequency, and speed Calculating means and uncertainties 	
 media and is a chance to revisit accurate language around particle theory. Then, uses of ultrasound and how microphones and loudspeakers work. 9PS – Sound Identifying sources of error Using SI units for wavelength, frequency, and speed Calculating means and uncertainties 	
ultrasound and how microphones and loudspeakers work. 9PS – Sound Identifying sources of error Using SI units for wavelength, frequency, and speed Calculating means and uncertainties	
 9PS - Sound Identifying sources of error Using SI units for wavelength, frequency, and speed Calculating means and uncertainties 	
 Identifying sources of error Using SI units for wavelength, frequency, and speed Calculating means and uncertainties 	
Using SI units for wavelength, frequency, and speed Calculating means and uncertainties	
Calculating means and uncertainties	
GCSE Chemistry STEM Club	
The periodic table provides chemists with a structured organisation of the known	
chemical elements from which they can make sense of their physical and chemical The Day	
properties. The historical development of the periodic table and models of atomic	
structure provide good examples of how scientific ideas and explanations develop over New Scientist	
time as new evidence emerges. The arrangement of elements in the modern periodic	
table can be explained in terms of atomic structure which provides evidence for the	
model of a nuclear atom with electrons in energy levels. Chemists use theories of CHEM 1 TEST – 45 MINS	
structure and bonding to explain the physical and chemical properties of materials.	
Year 9 Analysis of structures shows that atoms can be arranged in a variety of ways, some of	
HT6 which are molecular while others are giant structures. Theories of bonding explain how END OF YEAR PPE 1 – 60 MINS	
atoms are held together in these structures. Scientists use this knowledge of structure END OF YEAR PPE 2 – 60 MINS	
and bonding to engineer new materials with desirable properties. The properties of these	
materials may offer new applications in a range of different technologies	
AQA trilogy combined science – Chemistry	
Writing formulae and balanced symbol equations	
Evaluating the use of models	
Understanding the periodic table	
Using equipment correctly to test a hypothesis	

Term Curriculum Content		extra-Curricular Options aces to visit; wider reading; clubs to join)
 Year 10 Curriculum Overview: What will year 10s study and learn this academic year? Why this/ why now? Biology, chemistry, and physics will be studied in ways that help students to develop curiosity about the science works, and appreciation of its relevance to their everyday lives. After studying science, pupils should enable students to: develop scientific knowledge and conceptual understanding through the specific disciplines of b develop understanding of the nature, processes, and methods of science, through different type help them to answer scientific questions about the world around them. 	 natural world, insight into how inatural world, insight intohow inatural wo	CGP revision guide CGP Student books for biology, chemistry, and bhysics Dxford Revise revision guide hool activies: Stem club to be set up next
 develop and learn to apply observational, practical, modelling, enquiry, and problem-solving ski the field and in other learning environments. develop their ability to evaluate claims based on science through critical analysis of the method conclusions, both qualitatively and quantitatively. 	Ils, both in the laboratory, in ology, evidence, and S N N H	/ear
 The complex and diverse phenomena of the natural world can be described in terms of a small number chemistry, and physics. These key ideas are of universal application, and we have embedded them through underpin many aspects of the science assessment. Life processes depend on molecules whose structure is related to their function. The fundamental units of living organisms are cells, which may be part of highly adapted structures in organ systems, enabling living processes to be performed effectively. Life on Earth is dependent on photosynthesis in which green plants and algae trap light from the Sun the combine it with hydrogen from water to make organic compounds and oxygen. 	of key ideas in biology, ughout the subject content. cluding tissues, organs and o fix carbon dioxide and	Grant Museum of Zoology Brunel Museum St Bartholemew's Hospital Museum Bletchley Park
 Organic compounds are used as fuels in cellular respiration to allow the other chemical reactions nece matter is composed of tiny particles called atoms and there are about 100 different naturally occurring the Elements show periodic relationships in their chemical and physical properties. These periodic properties can be explained in terms of the atomic structure of the elements. Atoms bond by either transferring electrons from one atom to another or by sharing electrons. The shapes of molecules (groups of atoms bonded together) and the way giant structures are arranged terms of the way they behave. Chemical reactions take place in only three different ways: 1) proton transfer 2) electron transfer 3) electrons to can therefore be neither created or destroyed. 	types of atoms called elements d is of great importance in	

 The phenor gravitational That differed That proposed an important 	ences, for example between pressures or temperatures or electrical potentials, are the dr rtionality, for example between work and force of an object affects distance or between aspect of many models in science. al laws and models are expressed in mathematical form. Bonding, structure, and the properties of matter Students will learn about/ develop skills of:	rivers of change.	
Year 10 HT1	 Chemists use theories of structure and bonding to explain the physical and chemical properties of materials. Analysis of structures shows that atoms can be arranged in a variety of ways, some of which are molecular while others are giant structures. Theories of bonding explain how atoms are held together in these structures. Scientists use this knowledge of structure and bonding to engineer new materials with desirable properties. The properties of these materials may offer new applications in a range of different technologies. Visualise and represent 2D and 3D forms including two dimensional representations of 3D objects. Recognise substances as small molecules, polymers or giant structures from diagrams showing their bonding. Recognise substances as metallic giant structures from diagrams showing their bonding. Quantitative Chemistry Students will learn about/ develop skills of: Chemists use quantitative analysis to determine the formulae of compounds and the equations for reactions. Given this information, analysts can then use quantitative methods to determine the purity of chemical samples and to monitor the yield from chemical reactions can be classified in various ways. Identifying different types of chemical reaction allows chemists to make sense of how different chemicals react together, to establish patterns and to make predictions about the behaviour of other chemicals. Chemical equations provide a means of representing chemical reactions and are a keyway for chemists to communicate chemical ideas. Opportunities within investigation of mass changes using various apparatus. Recognise and use expressions in standard form. Use an appropriate number of significant figures. 	Fortnightly tests These are tests that are set, under exam conditions in the classroom, every two weeks. These are designed to assess the progress made during the previous two weeks' worth of learning. It provides pupils with excellent exam practise and an opportunity to persistently succeed.	

 Understand and use the symbols: =, <, >, <, <, Change the subject of an equation. Use ratios, fractions and percentages. Substitute numerical values into algebraic equations using appropriate units for physical quantities. Substitute numerical values into algebraic equations using appropriate units for physical quantities. Chemical Changes Students will learn about/ develop skills of: Understanding of chemical changes began when people began experimenting with chemical reactions in a systematic way and organizing their results logically. Knowing about these different chemical changes meant that scientists could begin to predict exactly what new substances would be formed and use this knowledge to develop a wide range of different materials and processes. It also helped biochemists to understand the complex reactions that take place in living organisms. The extraction of important resources from the earth makes use of the way that some elements Mixing of reagents to explore chemical changes may hen a strong acid neutralises a strong aikali. An opportunity to measure the pH of different acids at different concentrations. Make order of magnitude calculations. An opportunity to use safer alternatives for practical work such as anhydrous zinc chloride.
 Use ratios, fractions and percentages. Substitute numerical values into algebraic equations using appropriate units for physical quantities. Substitute numerical values into algebraic equations using appropriate units for physical quantities. Chemical Changes Students will learn about/ develop skills of: Understanding of chemical changes began when people began experimenting with chemical reactions in a systematic way and organizing their results logically. Knowing about these different chemical changes meant that scientists could begin to predict exactly what new substances would be formed and use this knowledge to develop a wide range of different materials and processes. It also helped biochemists to understand the complex reactions that take place in living organisms. The extraction of important resources from the earth makes use of the way that some elements Mixing of reagents to explore chemical changes when a strong acid neutralises a strong alkali. An opportunity to investigate pH changes when a strong acid neutralises a strong alkali. Make order of magnitude calculations. An opportunity to use safer alternatives for practical work such as anhydrous zinc chloride. Required practical activity 8: preparation of a pure, dry sample of a soluble salt from an insoluble oxide or carbonate, using a Bunsen burner to heat dilute acid and a water
 Substitute numerical values into algebraic equations using appropriate units for physical quantities. Substitute numerical values into algebraic equations using appropriate units for physical quantities. Chemical Changes Students will learn about/ develop skills of: Understanding of chemical changes began when people began experimenting with chemical reactions in a systematic way and organizing their results logically. Knowing about these different chemical changes meant that scientists toil begin to predict exactly what new substances would be formed and use this knowledge to develop a wide range of different materials and processes. It also helped biochemists to understand the complex reactions that take place in living organisms. The extraction of important resources from the earth makes use of the way that some elements Mixing of reagents to explore chemical changes and/or products. An opportunity to investigate pH changes when a strong acid neutralises a strong alkali. An opportunity to measure the pH of different acids at different concentrations. Make order of magnitude calculations. Ma opportunity to use safer alternatives for practical work such as anhydrous zinc chloride. Required practical activity 8: preparation of a pure, dry sample of a soluble salt from an insoluble oxide or carbonate, using a Bunsen burner to heat dilute acid and a water
 for physical quantities. Substitute numerical values into algebraic equations using appropriate units for physical quantities. Chemical Changes Students will learn about/ develop skills of: Understanding of chemical changes began when people began experimenting with chemical reactions in a systematic way and organizing their results logically. Knowing about these different chemical changes meant that scientists could begin to predict exactly what new substances would be formed and use this knowledge to develop a wide range of different materials and processes. It also helped biochemists to understand the complex reactions that take place in living organisms. The extraction of important resources from the earth makes use of the way that some elements Mixing of reagents to explore chemical changes and/or products. An opportunity to investigate pH changes when a strong acid neutralises a strong alkali. An opportunity to measure the pH of different acids at different concentrations. Make order of magnitude calculations. Make order of magnitude calculations. An opportunity to use safer alternatives for practical work such as anhydrous zinc chloride. Required practical activity 8: preparation of a pure, dry sample of a soluble salt from an insoluble oxide or carbonate, using a Bunsen burner to heat dilute acid and a water
 Substitute numerical values into algebraic equations using appropriate units for physical quantities. Chemical Changes Students will learn about/ develop skills of: Understanding of chemical changes began when people began experimenting with chemical reactions in a systematic way and organizing their results logically. Knowing about these different chemical changes meant that scientists could begin to predict exactly what new substances would be formed and use this knowledge to develop a wide range of different materials and processes. It also helped biochemists to understand the complex reactions that take place in living organisms. The extraction of important resources from the earth makes use of the way that some elements Mixing of reagents to explore chemical changes when a strong acid neutralises a strong alkali. An opportunity to investigate pH changes when a strong acid neutralises a strong alkali. An opportunity to measure the pH of different acids at different concentrations. Make order of magnitude calculations. An opportunity to use safer alternatives for practical work such as anhydrous zinc chloride. Required practical activity 8: preparation of a pure, dry sample of a soluble salt from an insoluble oxide or carbonate, using a Bunsen burner to heat dilute acid and a water
for physical quantities. Chemical Changes Students will learn about/ develop skills of: Understanding of chemical changes began when people began experimenting with chemical reactions in a systematic way and organizing their results logically. Knowing about these different chemical changes meant that scientists could begin to predict exactly what new substances would be formed and use this knowledge to develop a wide range of different materials and processes. It also helped biochemists to understand the complex reactions that take place in living organisms. The extraction of important resources from the earth makes use of the way that some elements • Mixing of reagents to explore chemical changes and/or products. • An opportunity to investigate pH changes when a strong acid neutralises a strong alkali. • An opportunity to measure the pH of different acids at different concentrations. • Make order of magnitude calculations. • An opportunity to use safer alternatives for practical work such as anhydrous zinc chloride. Required practical activity 8: preparation of a pure, dry sample of a soluble salt from an insoluble oxide or carbonate, using a Bunsen burner to heat dilute acid and a water
Chemical Changes Students will learn about/ develop skills of: Understanding of chemical changes began when people began experimenting with chemical reactions in a systematic way and organizing their results logically. Knowing about these different chemical changes meant that scientists could begin to predict exactly what new substances would be formed and use this knowledge to develop a wide range of different materials and processes. It also helped biochemists to understand the complex reactions that take place in living organisms. The extraction of important resources from the earth makes use of the way that some elements • Mixing of reagents to explore chemical changes when a strong acid neutralises a strong alkali. • An opportunity to investigate pH changes when a strong acid neutralises a strong alkali. • An opportunity to measure the pH of different acids at different concentrations. • Make order of magnitude calculations. • An opportunity to use safer alternatives for practical work such as anhydrous zinc chloride. Required practical activity 8: preparation of a pure, dry sample of a soluble salt from an insoluble oxide or carbonate, using a Bunsen burner to heat dilute acid and a water
 Students will learn about/ develop skills of: Understanding of chemical changes began when people began experimenting with chemical reactions in a systematic way and organizing their results logically. Knowing about these different chemical changes meant that scientists could begin to predict exactly what new substances would be formed and use this knowledge to develop a wide range of different materials and processes. It also helped biochemists to understand the complex reactions that take place in living organisms. The extraction of important resources from the earth makes use of the way that some elements Mixing of reagents to explore chemical changes and/or products. An opportunity to investigate pH changes when a strong acid neutralises a strong alkali. An opportunity to measure the pH of different acids at different concentrations. Make order of magnitude calculations. An opportunity to use safer alternatives for practical work such as anhydrous zinc chloride. Required practical activity 8: preparation of a pure, dry sample of a soluble salt from an insoluble oxide or carbonate, using a Bunsen burner to heat dilute acid and a water
 Students will learn about/ develop skills of: Understanding of chemical changes began when people began experimenting with chemical reactions in a systematic way and organizing their results logically. Knowing about these different chemical changes meant that scientists could begin to predict exactly what new substances would be formed and use this knowledge to develop a wide range of different materials and processes. It also helped biochemists to understand the complex reactions that take place in living organisms. The extraction of important resources from the earth makes use of the way that some elements Mixing of reagents to explore chemical changes and/or products. An opportunity to investigate pH changes when a strong acid neutralises a strong alkali. An opportunity to measure the pH of different acids at different concentrations. Make order of magnitude calculations. An opportunity to use safer alternatives for practical work such as anhydrous zinc chloride. Required practical activity 8: preparation of a pure, dry sample of a soluble salt from an insoluble oxide or carbonate, using a Bunsen burner to heat dilute acid and a water
 chemical reactions in a systematic way and organizing their results logically. Knowing about these different chemical changes meant that scientists could begin to predict exactly what new substances would be formed and use this knowledge to develop a wide range of different materials and processes. It also helped biochemists to understand the complex reactions that take place in living organisms. The extraction of important resources from the earth makes use of the way that some elements Mixing of reagents to explore chemical changes and/or products. An opportunity to investigate pH changes when a strong acid neutralises a strong alkali. An opportunity to measure the pH of different acids at different concentrations. Make order of magnitude calculations. An opportunity to use safer alternatives for practical work such as anhydrous zinc chloride. Required practical activity 8: preparation of a pure, dry sample of a soluble salt from an insoluble oxide or carbonate, using a Bunsen burner to heat dilute acid and a water
 about these different chemical changes meant that scientists could begin to predict exactly what new substances would be formed and use this knowledge to develop a wide range of different materials and processes. It also helped biochemists to understand the complex reactions that take place in living organisms. The extraction of important resources from the earth makes use of the way that some elements Mixing of reagents to explore chemical changes and/or products. An opportunity to investigate pH changes when a strong acid neutralises a strong alkali. An opportunity to measure the pH of different acids at different concentrations. Make order of magnitude calculations. An opportunity to use safer alternatives for practical work such as anhydrous zinc chloride. Required practical activity 8: preparation of a pure, dry sample of a soluble salt from an insoluble oxide or carbonate, using a Bunsen burner to heat dilute acid and a water
 exactly what new substances would be formed and use this knowledge to develop a wide range of different materials and processes. It also helped biochemists to understand the complex reactions that take place in living organisms. The extraction of important resources from the earth makes use of the way that some elements Mixing of reagents to explore chemical changes and/or products. An opportunity to investigate pH changes when a strong acid neutralises a strong alkali. An opportunity to measure the pH of different acids at different concentrations. Make order of magnitude calculations. An opportunity to use safer alternatives for practical work such as anhydrous zinc chloride. Required practical activity 8: preparation of a pure, dry sample of a soluble salt from an insoluble oxide or carbonate, using a Bunsen burner to heat dilute acid and a water
 wide range of different materials and processes. It also helped biochemists to understand the complex reactions that take place in living organisms. The extraction of important resources from the earth makes use of the way that some elements Mixing of reagents to explore chemical changes and/or products. An opportunity to investigate pH changes when a strong acid neutralises a strong alkali. An opportunity to measure the pH of different acids at different concentrations. Make order of magnitude calculations. An opportunity to use safer alternatives for practical work such as anhydrous zinc chloride. Required practical activity 8: preparation of a pure, dry sample of a soluble salt from an insoluble oxide or carbonate, using a Bunsen burner to heat dilute acid and a water
 understand the complex reactions that take place in living organisms. The extraction of important resources from the earth makes use of the way that some elements Mixing of reagents to explore chemical changes and/or products. An opportunity to investigate pH changes when a strong acid neutralises a strong alkali. An opportunity to measure the pH of different acids at different concentrations. Make order of magnitude calculations. An opportunity to use safer alternatives for practical work such as anhydrous zinc chloride. Required practical activity 8: preparation of a pure, dry sample of a soluble salt from an insoluble oxide or carbonate, using a Bunsen burner to heat dilute acid and a water
 of important resources from the earth makes use of the way that some elements Mixing of reagents to explore chemical changes and/or products. An opportunity to investigate pH changes when a strong acid neutralises a strong alkali. An opportunity to measure the pH of different acids at different concentrations. Make order of magnitude calculations. An opportunity to use safer alternatives for practical work such as anhydrous zinc chloride. Required practical activity 8: preparation of a pure, dry sample of a soluble salt from an insoluble oxide or carbonate, using a Bunsen burner to heat dilute acid and a water
 Mixing of reagents to explore chemical changes and/or products. An opportunity to investigate pH changes when a strong acid neutralises a strong alkali. An opportunity to measure the pH of different acids at different concentrations. Make order of magnitude calculations. An opportunity to use safer alternatives for practical work such as anhydrous zinc chloride. Required practical activity 8: preparation of a pure, dry sample of a soluble salt from an insoluble oxide or carbonate, using a Bunsen burner to heat dilute acid and a water
 An opportunity to investigate pH changes when a strong acid neutralises a strong alkali. An opportunity to measure the pH of different acids at different concentrations. Make order of magnitude calculations. An opportunity to use safer alternatives for practical work such as anhydrous zinc chloride. Required practical activity 8: preparation of a pure, dry sample of a soluble salt from an insoluble oxide or carbonate, using a Bunsen burner to heat dilute acid and a water
 strong alkali. An opportunity to measure the pH of different acids at different concentrations. Make order of magnitude calculations. An opportunity to use safer alternatives for practical work such as anhydrous zinc chloride. Required practical activity 8: preparation of a pure, dry sample of a soluble salt from an insoluble oxide or carbonate, using a Bunsen burner to heat dilute acid and a water
 An opportunity to measure the pH of different acids at different concentrations. Make order of magnitude calculations. An opportunity to use safer alternatives for practical work such as anhydrous zinc chloride. Required practical activity 8: preparation of a pure, dry sample of a soluble salt from an insoluble oxide or carbonate, using a Bunsen burner to heat dilute acid and a water
 concentrations. Make order of magnitude calculations. An opportunity to use safer alternatives for practical work such as anhydrous zinc chloride. Required practical activity 8: preparation of a pure, dry sample of a soluble salt from an insoluble oxide or carbonate, using a Bunsen burner to heat dilute acid and a water
 Make order of magnitude calculations. An opportunity to use safer alternatives for practical work such as anhydrous zinc chloride. Required practical activity 8: preparation of a pure, dry sample of a soluble salt from an insoluble oxide or carbonate, using a Bunsen burner to heat dilute acid and a water
 An opportunity to use safer alternatives for practical work such as anhydrous zinc chloride. Required practical activity 8: preparation of a pure, dry sample of a soluble salt from an insoluble oxide or carbonate, using a Bunsen burner to heat dilute acid and a water
zinc chloride. Required practical activity 8: preparation of a pure, dry sample of a soluble salt from an insoluble oxide or carbonate, using a Bunsen burner to heat dilute acid and a water
Required practical activity 8: preparation of a pure, dry sample of a soluble salt from an insoluble oxide or carbonate, using a Bunsen burner to heat dilute acid and a water
an insoluble oxide or carbonate, using a Bunsen burner to heat dilute acid and a water
an insoluble oxide or carbonate, using a Bunsen burner to heat dilute acid and a water
Required practical activity 9: investigate what happens when aqueous solutions are
electrolysed using inert electrodes. This should be an investigation involving
developing a hypothesis.
Energy Changes Fortnightly tests
Year 10Students will learn about/ develop skills of:These are tests that are set,
HT2 Energy changes are an important part of chemical reactions. The interaction of under exam conditions in the
particles often involves transfers of energy due to the breaking and formation of classroom, every two weeks.

bonds. Reactions in which energy is released to the surroundings are exothermic	These are designed to assess the	
reactions, while those that take in thermal energy are endothermic. These	progress made during the	
interactions between particles can produce heating or cooling effects that are used in	previous two weeks worth of	
a range of everyday applications. Some interactions between ions in an electrolyte	learning. It provides pupils with	
result in the production of electricity. Cells and batteries use these chemical reactions	excellent exam practise and an	
to provide electricity. Electricity can also be used to decompose ionic substances and	opportunity to persistently	
is a useful means of producing elements that are too expensive to extract any other	succeed.	
way.		
 An opportunity to measure temperature changes when substances react or 		
dissolve in water.		
Cell Biology		
Students will learn about/ develop skills of:		
Cells are the basic unit of all forms of life. In this section we explore how structural		
differences between types of cells enables them to perform specific functions within		
the organism. These differences in cells are controlled by genes in the nucleus. For an		
organism to grow, cells must divide by mitosis producing two new identical cells. If		
cells are isolated at an early stage of growth before they have become too specialised,		
they can retain their ability to grow into a range of different types of cells. This		
phenomenon has led to the development of stem cell technology. This is a new		
branch of medicine that allows doctors to repair damaged organs by growing new		
tissue from stem cells.		
• Develop an understanding of size and scale in relation to cells, tissues, organs		
and systems.		
Use other models to explain enzyme action.		
Organisation		
Students will learn about/ develop skills of:		
In this section we will learn about the human digestive system which provides the		
body with nutrients and the respiratory system that provides it with oxygen and		
removes carbon dioxide. In each case they provide dissolved materials that need to be		
moved quickly around the body in the blood by the circulatory system. Damage to any		
of these systems can be debilitating if not fatal. Although there has been huge		
progress in surgical techniques, especially about coronary heart disease, many		
interventions would not be necessary if individuals reduced their risks through		
improved diet and lifestyle. We will also learn how the plant's transport system is		
dependent on environmental conditions to ensure that leaf cells are provided with		
the water and carbon dioxide that they need for photosynthesis.		

	Use other models to explain enzyme action.		
	 Observing and drawing blood cells seen under a microscope. 		
	 Evaluate risks related to use of blood products. 		
	 Evaluate methods of treatment bearing in mind the benefits and risks 		
	associated with the treatment.		
	 Interpret data about risk factors for specified diseases. 		
	 Observation and drawing of a transverse section of leaf. 		
	 Measure the rate of transpiration by the uptake of water. 		
	 Investigate the distribution of stomata and guard cells. 		
	 Process data from investigations involving stomata and transpiration rates to 		
	find arithmetic means, understand the principles of sampling and calculate		
	surface areas and volumes.		
	Required practical activity 10: investigate the variables that affect temperature		
	changes in reacting solutions such as, eg acid plus metals, acid plus carbonates,		
	neutralisations, displacement of metals.		
	Demained and stick a thirth. A way a light asign and to show a during and label a		
	Required practical activity 1 : use a light microscope to observe, draw and label a selection of plant and animal cells. A magnification scale must be included.		
	selection of plant and animal cens. A magnification scale must be included.		
	Required practical activity 2: investigate the effect of a range of concentrations of salt		
	or sugar solutions on the mass of plant tissue.		
	Required practical activity 3: use qualitative reagents to test for a range of		
	carbohydrates, lipids and proteins. To include: Benedict's test for sugars; iodine test		
	for starch; and Biuret reagent for protein.		
	Required practical activity 4: investigate the effect of pH on the rate of reaction of		
	amylase enzyme.		
	Infection and response	Fortnightly tests	
	Students will learn about/ develop skills of:	These are tests that are set,	
	Pathogens are microorganisms such as viruses and bacteria that cause infectious	under exam conditions in the	
Year 10	diseases in animals and plants. They depend on their host to provide the conditions	classroom, every two weeks.	
HT3	and nutrients that they need to grow and reproduce. They frequently produce toxins	These are designed to assess the	
	that damage tissues and make us feel ill. This section will explore how we can avoid	progress made during the	
	diseases by reducing contact with them, as well as how the body uses barriers against	previous two weeks worth of	
	pathogens. Once inside the body our immune system is triggered which is usually	learning. It provides pupils with	
	strong enough to destroy the pathogen and prevent disease. When at risk from	excellent exam practise and an	

unusual or dangerous diseases our body's natural system can be enhanced using vaccination. Since the 1940s a range of antibiotics have been developed which have proved successful against several lethal diseases caused by bacteria. Unfortunately, many groups of bacteria have now become resistant to these antibiotics. The race is now on to develop a new set of antibiotics.	opportunity to persistently succeed.	
• Evaluate the global use of vaccination in the prevention of disease.	What's assessed Chemistry	
 Understand that the results of testing and trials are published only after 	topics:	
scrutiny by peer review.	 Atomic structure and 	
sciulity by peer review.	the periodic table;	
Bioenergetics	Bonding,	
Students will learn about/ develop skills of:	\circ structure, and the	
In this section we will explore how plants harness the Sun's energy in photosynthesis	properties of matter;	
in order to make food. This process liberates oxygen which has built up over millions	 Quantitative chemistry; 	
of years in the Earth's atmosphere. Both animals and plants use this oxygen to oxidise	 Chemical changes; and 	
food in a process called aerobic respiration which transfers the energy that the	 Energy changes. 	
organism needs to perform its functions. Conversely, anaerobic respiration does not		
require oxygen to transfer energy. During vigorous exercise the human body is unable	How it's assessed:	
to supply the cells with sufficient oxygen and it switches to anaerobic respiration. This	Written exam: 1 hour 15	
process will supply energy but also causes the build-up of lactic acid in muscles which	minutes	
causes fatigue. Evaluate the global use of vaccination in the prevention of disease.	• Foundation	
Solve simple algebraic equations.	 Higher Tier 	
• Use data to relate limiting factors to the cost effectiveness of adding heat,		
light or carbon dioxide to greenhouses.	Maximum marks = 70 marks	
 Investigations into the effect of exercise on the body. 	which makes up 16.7% of GCSE	
_	Questions will be assessed using	
Energy Studente will learn chevit (develop skille of:	Multiple choice,	
Students will learn about/ develop skills of: The concept of energy emerged in the 19th century. The idea was used to explain the	• structured,	
work output of steam engines and then generalised to understand other heat	• closed short answer,	
engines. It also became a key tool for understanding chemical reactions and biological	open response.	
systems.		
Limits to the use of fossil fuels and global warming are critical problems for this		
century. Physicists and engineers are working hard to identify ways to reduce our		
energy usage.		
 Explore the link between work done (energy transfer) and current flow in a 		
circuit is covered in Work done and energy transfer.		
circuit is covered in work done and energy transfer.		

	 Investigate the transfer of energy from a gravitational potential energy store to a kinetic energy store. Investigate thermal conductivity using rods of different materials. Required practical activity 5: investigate the effect of light intensity on the rate of photosynthesis using an aquatic organism such as pondweed. 		
	Required practical activity 14 : an investigation to determine the specific heat capacity of one or more materials. The investigation will involve linking the decrease of one energy store (or work done) to the increase in temperature and subsequent increase in thermal energy stored.		
Year 10 HT4	 Electricity Students will learn about/ develop skills of: Electric charge is a fundamental property of matter everywhere. Understanding the difference in the microstructure of conductors, semiconductors and insulators makes it possible to design components and build electric circuits. Many circuits are powered with mains electricity, but portable electrical devices must use batteries of some kind. Electrical power fills the modern world with artificial light and sound, information and entertainment, remote sensing and control. The fundamentals of electromagnetism were worked out by scientists of the 19th century. However, power stations, like all machines, have a limited lifetime. If we all continue to demand more electricity this means building new power stations in every generation – but what mix of power stations can promise a sustainable future? Students should be able to recall, apply and manipulate equations. Investigate the relationship between the resistance of a thermistor and temperature. Investigate the relationship between the resistance of an LDR and light intensity. 	Fortnightly tests These are tests that are set, under exam conditions in the classroom, every two weeks. These are designed to assess the progress made during the previous two weeks worth of learning. It provides pupils with excellent exam practise and an opportunity to persistently succeed.	
	Required practical activity 15: use circuit diagrams to set up and check appropriate circuits to investigate the factors affecting the resistance of electrical circuits. This should include: • the length of a wire at constant temperature • combinations of resistors in series and parallel.		

	Required practical activity 16: use circuit diagrams to construct appropriate circuits to investigate the I–V characteristics of a variety of circuit elements, including a filament lamp, a diode and a resistor at constant temperature.		
Year 10 HT5	 Particle model of matter Students will learn about/ develop skills of: The particle model is widely used to predict the behaviour of solids, liquids, and gases and this has many applications in everyday life. It helps us to explain a wide range of observations and engineers use these principles when designing vessels to withstand high pressures and temperatures, such as submarines and spacecraft. It also explains why it is difficult to make a good cup of tea high up a mountain! Students should be able to recall and apply this equation to changes where mass is conserved. Investigate the relationship between the resistance of a thermistor and temperature. Investigate the relationship between the resistance of an LDR and light intensity. Atomic Structure Students will learn about/ develop skills of: Ionising radiation is hazardous but can be very useful. Although radioactivity was discovered over a century ago, it took many nuclear physicists several decades to understand the structure of atoms, nuclear forces and stability. Early researchers suffered from their exposure to ionising radiation. Rules for radiological protection were first introduced in the 1930s and subsequently improved. Today radioactive materials are widely used in medicine, industry, agriculture, and electrical power generation. Students should be able to recognise expressions given in standard form. Use the historical context provided as an opportunity for students to show an understanding of why and describe how scientific methods and theories develop over time. 	Fortnightly tests These are tests that are set, under exam conditions in the classroom, every two weeks. These are designed to assess the progress made during the previous two weeks worth of learning. It provides pupils with excellent exam practise and an opportunity to persistently succeed.	
	 Homeostasis Students will learn about/ develop skills of: Cells in the body can only survive within narrow physical and chemical limits. They require a constant temperature and pH as well as a constant supply of dissolved food and water. In order to do this the body requires control systems that constantly monitor and adjust the composition of the blood and tissues. These control systems 		

	 include receptors which sense changes and effectors that bring about changes. In this section we will explore the structure and function of the nervous system and how it can bring about fast responses. We will also explore the hormonal system which usually brings about much slower changes. Hormonal coordination is particularly important in reproduction since it controls the menstrual cycle. An understanding of the role of hormones in reproduction has allowed scientists to develop not only contraceptive drugs but also drugs which can increase fertility. Students should be able to recognise expressions given in standard form. Evaluate information around the relationship between obesity and diabetes and make recommendations considering social and ethical issues. Show why issues around contraception cannot be answered by science alone. Explain every day and technological applications of science; evaluate associated personal, social, economic, and environmental implications; and make decisions based on the evaluation of evidence and arguments. Developments of microscopy techniques have enabled IVF treatments to develop. Understand social and ethical issues associated with IVF treatments. Evaluate from the perspective of patients and doctors the methods of treating infertility. Interpret and explain simple diagrams of negative feedback control. Required practical activity 17 : use appropriate apparatus to make and record the measurements needed to determine the densities of regular and irregular solid objects, and by a displacement technique for irregularly shaped objects. Dimensions to be measured using appropriate apparatus such as a ruler, micrometer or Vernier callipers. Required practical activity 6: plan and carry out an investigation into the effect of a factor on human reaction time.		
Year 10 HT6	Inheritance, variation and evolution Students will learn about/ develop skills of: In this section we will discover how the number of chromosomes is halved during meiosis and then combined with new genes from the sexual partner to produce unique offspring. Gene mutations occur continuously and on rare occasions can affect the functioning of the animal or plant. These mutations may be damaging and lead to several genetic disorders or death. Very rarely a new mutation can be beneficial and	Fortnightly tests These are tests that are set, under exam conditions in the classroom, every two weeks. These are designed to assess the progress made during the previous two weeks worth of	

consequently, lead to increased fitness in the individual. Variation generated by mutations and sexual reproduction is the basis for natural selection; this is how species evolve. An understanding of these processes has allowed scientists to intervene through selective breeding to produce livestock with favoured characteristics. Once new varieties of plants or animals have been produced it is possible to clone individuals to produce larger numbers of identical individuals all carrying the favourable characteristic. Scientists have now discovered how to take genes from one species and introduce them into the genome of another by a process called genetic engineering. Despite the huge potential benefits that this technology can offer, genetic modification remains highly controversial.

- Model behaviour of chromosomes during meiosis.
- Appreciate that embryo screening and gene therapy may alleviate suffering but consider the ethical issues which arise.
- Use the theory of evolution by natural selection in an explanation.
- Explain the benefits and risks of selective breeding given appropriate information and consider related ethical issues.
- Interpret information about genetic engineering techniques and to make informed judgements about issues concerning cloning and genetic engineering, including GM crops.
- Use data to support the theory of evolution.
- Extract and interpret information from charts, graphs and tables.
- Appreciate why the fossil record is incomplete.
- Understand how scientific methods and theories develop over time.
- Interpret evolutionary trees.

learning. It provides pupils with excellent exam practise and an opportunity to persistently succeed.

PPE 2 Three full paper 1 mocks. 50% of total GCSEs

What's assessed **Biology** topics:

- Cell Biology;
- Organisation;
- Infection and response;
- Bioenergetics.

How it's assessed: Written exam: 1 hour 15 minutes

- o Foundation
- Higher Tier

Maximum marks = 70 marks which makes up 16.7% of GCSE Questions will be assessed using

- Multiple choice,
- structured,
- closed short answer, open response.

What's assessed **Chemistry** topics:

- Atomic structure and the periodic table; Bonding,
- structure, and the properties of matter;
 Quantitative chemistry;

 Chemical changes; and 	
 Energy changes. 	
How it's assessed:	
Written exam: 1 hour 15	
minutes	
 Foundation 	
 Higher Tier 	
Maximum marks = 70 marks	
which makes up 16.7% of GCSE	
Questions will be assessed using	
Multiple choice,	
• structured,	
• closed short answer,	
open response.	
What's assessed Physics topics:	
 Energy; 	
 Electricity; 	
Particle model of	
matter;	
Atomic structure.	
How it's assessed:	
Written exam: 1 hour 15	
minutes	
 Foundation 	
 Higher Tier 	
-	
Maximum marks = 70 marks	
which makes up 16.7% of GCSE	
Questions will be assessed using	
 Multiple choice, 	
 structured, 	
 closed short answer, 	
open response.	

Term	Curriculum Content	Assessment(s) (assessment title, duration and approx date)	Extra-Curricular Options (Places to visit; wider reading; clubs to join)
What will ye Biology, cher how science After studyir • deve • deve help • deve the f	iculum Overview: ar 11s study and learn this academic year? Why this/ why now? mistry, and physics should be studied in ways that help students to develop curiosity abor works, and appreciation of its relevance to their everyday lives. In science, pupils should enable students to: slop scientific knowledge and conceptual understanding through the specific disciplines of slop understanding of the nature, processes, and methods of science, through different ty them to answer scientific questions about the world around them. slop and learn to apply observational, practical, modelling, enquiry, and problem-solving s ield and in other learning environments. slop their ability to evaluate claims based on science through critical analysis of the methor dusions, both qualitatively and quantitatively.	f biology, chemistry, and physics. ypes of scientific enquiries that skills, both in the laboratory, in	 CGP revision guide CGP Student books for biology, chemistry, and physics Oxford Revise revision guide In school activies: Stem club to be set up next year Visit: Science museum Natural History Museum Horniman Museum Horniman Museum The Royal Observatory Grant Museum of Zoology Brunel Museum St Bartholemew's Hospital Museum Bletchley Park
Year 11 HT1	Organic Chemistry Students will learn about/ develop skills of: The chemistry of carbon compounds is so important that it forms a separate branch of chemistry. A great variety of carbon compounds is possible because carbon atoms can form chains and rings linked by C-C bonds. This branch of chemistry gets its name from the fact that the main sources of organic compounds are living, or once-living materials from plants and animals. These sources include fossil fuels which are a major source of feedstock for the petrochemical industry. Chemists can take organic molecules and modify them in many ways to make new and useful materials such as polymers, pharmaceuticals, perfumes and flavourings, dyes and detergents.	Fortnightly tests These are tests that are set, under exam conditions in the classroom, every two weeks. These are designed to assess the progress made during the previous two weeks' worth of learning. It provides pupils with excellent exam practise and an	

 Make models of alkane molecules using the molecular modelling kits. 	opportunity	to	persistently	
 Investigate the properties of different hydrocarbons. 	succeed.			
Chemical Analysis				
Students will learn about/ develop skills of:				
Analysts have developed a range of qualitative tests to detect specific chemicals. The				
tests are based on reactions that produce a gas with distinctive properties, or a colour				
change or an insoluble solid that appears as a precipitate.				
Instrumental methods provide fast, sensitive, and accurate means of analysing				
chemicals, and are particularly useful when the amount of chemical being analysed is				
small. Forensic scientists and drug control scientists rely on such instrumental				
methods in their work.				
 Recognise and use expressions in decimal form. 				
 Use ratios, fractions, and percentages. 				
 Make estimates of the results of simple calculations. 				
Chemistry of the atmosphere				
Students will learn about/ develop skills of:				
The Earth's atmosphere is dynamic and forever changing. The causes of these changes				
are sometimes man-made and sometimes part of many natural cycles. Scientists use				
very complex software to predict weather and climate change as there are many				
variables that can influence this. The problems caused by increased levels of air				
pollutants require scientists and engineers to develop solutions that help to reduce				
the impact of human activity.				
Recognise and use expressions in decimal form.				
Use ratios, fractions, and percentages.				
• An opportunity to show that aquatic plants produce oxygen in daylight.				
Using resources				
Students will learn about/ develop skills of:				
Industries use the Earth's natural resources to manufacture useful products. To				
operate sustainably, chemists seek to minimise the use of limited resources, use of				
energy, waste, and environmental impact in the manufacture of these products.				
Chemists also aim to develop ways of disposing of products at the end of their useful				
life in ways that ensure that materials and stored energy are utilised. Pollution,				
disposal of waste products and changing land use has a significant effect on the environment, and environmental chemists' study how human activity has affected the				
Earth's natural cycles, and how damaging effects can be minimised.				
במונו ז וומנטומו נענוכז, מווט ווטיש טמווומצוווצ בוובנוג נמוו שב ווווווווווגבט.	L			

 Translate information between graphical and numeric form. LCAs should be done as a comparison of the impact on the environment of the stages in the life of a product, and only quantified where data is readily available for energy, water, resources, and wastes. Interpret LCAs of materials or products given appropriate information. Recognise and use expressions in decimal form. Homeostasis Students will learn about/ develop skills of: Cells in the body can only survive within narrow physical and chemical limits. They require a constant temperature and pH as well as a constant supply of dissolved food and water. To do this the body requires control systems that constantly monitor and adjust the composition of the blood and tissues. These control systems include receptors which sense changes and effectors that bring about changes. In this section we will explore the structure and function of the nervous system and how it can bring about fast responses. We will also explore the hormonal system which uses challed is subjust the composition of the related is bar the compositing size expressions given in standard form. Students should be able to recognise expressions given in standard form. Evaluate information around the relationship between obesity and diabetes and make recommendations considering social and ethical issues. Show why issues around contractions canswered by science alone. Explain every day and technological applications of science; evaluate associated period, social, social, social, comonic, and environmental implications; and make decisions based on the evaluation of science; evaluate associated personal, social, comonic, and environmental implications; and make decisions based on the evaluation of science; evaluate associated personal, social, comonic, and environmental implications; and make decisions based on the evaluation of science; evaluate associated pe		
 the stages in the life of a product, and only quantified where data is readily available for energy, water, resources, and wastes. Interpret LCAS of materials or products given appropriate information. Recognise and use expressions in decimal form. Homeostasis Students will learn about/ develop skills of: Cells in the body can only survive within narrow physical and chemical limits. They require a constant temperature and pH as well as a constant supply of dissolved food and water. To do this the body requires control systems that constantly monitor and adjust the composition of the blood and tissues. These control systems include receptors which sense changes and effectors that bring about changes. In this section we will explore the structure and function of the nervous system and how it can bring about fast responses. We will also explore the hormonal system which usually brings about much slower changes. Hormonal coordination is particularly important in reproduction has allowed scientists to develop not only contraceptive drugs but also change which can increase fertility. Students should be able to recognise expressions given in standard form. Evaluate information around the relationship between obesity and diabetes and make recommendations considering social and ethical issues. Show why issues around contraception cannot be answered by science alone. Explain every day and technological applications of science: evaluate associated personal, social, economic, and environmental implications; and make decisions based on the evaluation of weil VF treatments. Evaluate form the perspective of patients and doctors the methods of treating infertility. Interpret and explain simple diagrams of negative feedback control. Required practical activity 12: investigate how paper chromatography can be used to separate and tell the difference between coloured substances. Students should	 Translate information between graphical and numeric form. 	
 available for energy, water, resources, and wastes. Interpret LCAs of materials or products given appropriate information. Recognise and use expressions in decimal form. Homeostasi Students will learn about/ develop skills of: Cells in the body can only survive within narrow physical and chemical limits. They require a constant temperature and pH as well as a constant supply of dissolved food and water. To do this the body requires control systems that constantly monitor and adjust the composition of the body and fissues. These control systems that constantly monitor and adjust the composition of the lood and tissues. These control systems that constantly monitor and adjust the recomposition of the leod and tissues. These control systems that constantly monitor and adjust the composition of the leod and tissues. These control systems include receptors which sense changes and effectors that bring about changes. In this section we will explore the structure and function of the nervous system and how it can bring about fast responses. We will also explore the hormonal system which usually brings about much slower changes. Hormonal coordination is particularly important in reproduction since it controls the menstrual cycle. An understanding of the role of hormones in reproduction has allowed scientists to develop not only contraceptive drugs but also drugs which can increase fertility. Students should be able to recognise expressions given in standard form. Explain every day and technological applications of science; evaluate associated personal, social, economic, and environmental implications; and make decisions based on the evaluation of science; evaluate associated personal, social, economic, and environmental implications; and make decisions based on the evaluation of vidence and arguments. Developments of microscopy techniques have enabled IVF treatments to develop. Understand social and ethical isues associated with IVF treatme	 LCAs should be done as a comparison of the impact on the environment of 	
 Interpret LCAs of materials or products given appropriate information. Recognise and use expressions in decimal form. Homeostasi Students will learn about/ develop skills of: Cells in the body can only survive within narrow physical and chemical limits. They require a constant temperature and pH as well as a constant supply of disolved food and water. To do this the body requires control systems that constantly monitor and adjust the composition of the blood and tissues. These control systems include receptors which sense changes and effectors that bring about changes. In this section we will explore the structure and function of the nervous system and how it can bring about fast responses. We will also explore the hormonal system which usually brings about much slower changes. Hormonal coordination is particularly important in reproduction has allowed scientists to develop not only contraceptive drugs but also drugs which can increase fertility. Students should be able to recognise expressions given in standard form. Evaluate information around the relationship between obesity and diabetes and make recommendations considering social and ethical issues. Show why issues around contraception cannot be answered by science alone. Evaluate normation around evaluation of evidence and arguments. Developments of microscopy techniques have enabled IVF treatments to develop. Understand social and ethical issues associated with IVF treatments. Evaluate information around the discuss and doctors the methods of treating infertility. Interpret and explain simple diagrams of negative feedback control. Required practical activity 12: investigate how paper chromatography can be used to separate and tell the difference between coloured substances. Students should 	the stages in the life of a product, and only quantified where data is readily	
 Recognise and use expressions in decimal form. Homeostasis Students will learn about/ develop skills of: Cells in the body can only survive within narrow physical and chemical limits. They require a constant temperature and pH as well as a constant supply of dissolved food and water. To do this the body requires control systems that constantly monitor and adjust the composition of the blood and tissues. These control systems include receptors which sense changes and effectors that bring about changes. In this section we will explore the structure and function of the nervous system and how it can bring about fast responses. We will also explore the hormonal system which usually brings about much slower changes. Hormonal coordination is particularly important in reproduction since it controls the menstrual cycle. An understanding of the role of hormones in reproduction has allowed scientists to develop not only contraceptive drugs but also drugs which can increase fertility. Students which use arround the relationship between obesity and diabetes and make recommendations considering social and ethical issues. Show why issues around contraception cannot be answered by science alone. Explain every day and technological applications of science; evaluate associated personal, social, economic, and environmental implications; and make decisions based on the evaluation of evidence and ragments. Developments of microscopy techniques have enabled IVF treatments to develop. Understand social and ethical issues associated with IVF treatments. Evaluate from the perspective of patients and doctors the methods of treating infertility. Interpret and explain simple diagrams of negative feedback control. Required practical activity 12: investigate how paper chromatography can be used to separate and tell the difference letween coloured substances. Student should 	available for energy, water, resources, and wastes.	
Homeostasis Students will learn about/ develop skills of: Cells in the body can only survive within narrow physical and chemical limits. They require a constant temperature and pH as well as a constant supply of dissolved food and water. To do this the body requires control systems that constantly monitor and adjust the composition of the blood and tissues. These control systems include receptors which sense changes and effectors that bring about changes. In this section we will explore the structure and function of the nervous system and how it can bring about much slower changes. Hormonal coordination is particularly important in reproduction since it controls the menstrual cycle. An understanding of the role of hormones in reproduction has allowed scientists to develop not only contraceptive drugs but also drugs which can increase fertility. • Students should be able to recognise expressions given in standard form. • Evaluate information around the relationship between obesity and diabetes and make recommendations considering social and ethical issues. • Show why issues around contraception cannot be answered by science alone. • Explain every day and technological applications of science; evaluate associated personal, social, economic, and environmental implications; and make decisions based on the evaluation of evidence and arguments. • Developments of microscopy techniques have enabled IVF treatments to develop. • Understand social and ethical issues associated with IVF treatments. • Evaluate from the perspective of patients and doctors the methods of treating infertility. • Interpret and explain simple diagrams of negative feedback control.<	 Interpret LCAs of materials or products given appropriate information. 	
Students will learn about/ develop skills of: Cells in the body can only survive within narrow physical and chemical limits. They require a constant temperature and pH as well as a constant supply of dissolved food and water. To do this the body requires control systems that constantly monitor and adjust the composition of the blood and tissues. These control systems include receptors which sense changes and effectors that bring about changes. In this section we will explore the structure and function of the nervous system and how it can bring about much slower changes. Hormonal coordination is particularly important in reproduction since it controls the menstrual cycle. An understanding of the role of hormones in reproduction has allowed scientists to develop not only contraceptive drugs but also drugs which can increase fertility. • Students should be able to recognise expressions given in standard form. • Evaluate information around the relationship between obesity and diabetes and make recommendations considering social and ethical issues. • Show why issues around contraception cannot be answered by science alone. • Explain every day and technological applications of science; evaluate associated personal, social; enonomic, and environmental implications; and make decisions based on the evaluation of evidence and arguments.	Recognise and use expressions in decimal form.	
Cells in the body can only survive within narrow physical and chemical limits. They require a constant temperature and pH as well as a constant supply of dissolved food and water. To do this the body requires control systems include receptors which sense changes and effectors that bring about changes. In this section we will explore the structure and function of the nervous system and how it can bring about fast responses. We will also explore the hormonal system which usually brings about fast responses. Hormonal coordination is particularly important in reproduction since it controls the menstrual cycle. An understanding of the role of hormones in reproduction has allowed scientists to develop not only contraceptive drugs but also drugs which can increase fertility. • Students should be able to recognise expressions given in standard form. • Evaluate information around the relationship between obesity and diabetes and make recommendations considering social and ethical issues. • Show why issues around contraception cannot be answered by science alone. • Explain every day and technological applications of science; evaluate information around the relations of science; evaluate advectors and and ethical issues associated personal, social, economic, and environmental implications; and make decisions based on the evaluation of evidence and arguments. • Developments of microscopy techniques have enabled IVF treatments to develop. • Understand social and ethical issue associated with I	Homeostasis	
Cells in the body can only survive within narrow physical and chemical limits. They require a constant temperature and pH as well as a constant supply of dissolved food and water. To do this the body requires control systems include receptors which sense changes and effectors that bring about changes. In this section we will explore the structure and function of the nervous system and how it can bring about fast responses. We will also explore the hormonal system which usually brings about fast responses. Hormonal coordination is particularly important in reproduction since it controls the menstrual cycle. An understanding of the role of hormones in reproduction has allowed scientists to develop not only contraceptive drugs but also drugs which can increase fertility. • Students should be able to recognise expressions given in standard form. • Evaluate information around the relationship between obesity and diabetes and make recommendations considering social and ethical issues. • Show why issues around contraception cannot be answered by science alone. • Explain every day and technological applications of science; evaluate information around the relations of science; evaluate advectors and and ethical issues associated personal, social, economic, and environmental implications; and make decisions based on the evaluation of evidence and arguments. • Developments of microscopy techniques have enabled IVF treatments to develop. • Understand social and ethical issue associated with I	Students will learn about/ develop skills of:	
require a constant temperature and pH as well as a constant supply of dissolved food and water. To do this the body requires control systems that constantly monitor and adjust the composition of the blood and tissues. These control systems include receptors which sense changes and effectors that bring about changes. In this section we will explore the structure and function of the nervous system and how it can bring about much slower changes. Hormonal coordination is particularly important in reproduction since it controls the menstrual cycle. An understanding of the role of hormones in reproduction has allowed scientists to develop not only contraceptive drugs but also drugs which can increase fertility. • Students should be able to recognise expressions given in standard form. • Evaluate information around the relationship between obesity and diabetes and make recommendations considering social and ethical issues. • Show why issues around contraception cannot be answered by science alone. • Explain every day and technological applications of science; evaluate associated personal, social, economic, and environmental implications; and make decisions based on the evaluation of evidence and arguments. • Developments of microscopy techniques have enabled IVF treatments to develop. • Understand social and ethical issues associated with IVF treatments to develop. • Understand social and ethical issue associated with IVF treatments. • Evaluate from the perspective of patients and doctors the methods of treating infertility. • Interpret and explain simple diagrams of negative feedback control. Required practical activity 12: investigate how paper chromatography can be used to separate and tell the difference between coloured substances. Students should		
adjust the composition of the blood and tissues. These control systems include receptors which sense changes and effectors that bring about changes. In this section we will explore the structure and function of the nervous system which usually brings about fast responses. We will also explore the hormonal system which usually brings about much slower changes. Hormonal coordination is particularly important in reproduction since it controls the menstrual cycle. An understanding of the role of hormones in reproduction has allowed scientists to develop not only contraceptive drugs but also drugs which can increase fertility. • Students should be able to recognise expressions given in standard form. • Evaluate information around the relationship between obesity and diabetes and make recommendations considering social and ethical issues. • Show why issues around contraception cannot be answered by science alone. • Explain every day and technological applications of science; evaluate associated personal, social, conomic, and environmental implications; and make decisions based on the evaluation of evidence and arguments. • Developments of microscopy techniques have enabled IVF treatments to develop. • Understand social and ethical issues associated with IVF treatments. • Evaluate from the perspective of patients and doctors the methods of treating infertility.		
receptors which sense changes and effectors that bring about changes. In this section we will lexplore the structure and function of the nervous system and how it can bring about fast responses. We will also explore the hormonal system which usually brings about much slower changes. Hormonal coordination is particularly important in reproduction since it controls the menstrual cycle. An understanding of the role of hormones in reproduction has allowed scientists to develop not only contraceptive drugs but also drugs which can increase fertility. • Students should be able to recognise expressions given in standard form. • Evaluate information around the relationship between obesity and diabetes and make recommendations considering social and ethical issues. • Show why issues around contraception cannot be answered by science alone. • Explain every day and technological applications of science; evaluate associated personal, social, economic, and environmental implications; and make decisions based on the evaluation of evidence and arguments. • Developments of microscopy techniques have enabled IVF treatments to develop. • Understand social and ethical issues associated with IVF treatments. • Evaluate from the perspective of patients and doctors the methods of treating infertility. • Interpret and explain simple diagrams of negative feedback control. Required practical activity 12 : investigate how paper chromatography can be used to separate and tell the difference between coloured substances. Students should	and water. To do this the body requires control systems that constantly monitor and	
 we will explore the structure and function of the nervous system and how it can bring about fast responses. We will also explore the hormonal system which usually brings about much slower changes. Hormonal coordination is particularly important in reproduction since it controls the menstrual cycle. An understanding of the role of hormones in reproduction has allowed scientists to develop not only contraceptive drugs but also drugs which can increase fertility. Students should be able to recognise expressions given in standard form. Evaluate information around the relationship between obesity and diabetes and make recommendations considering social and ethical issues. Show why issues around contraception cannot be answered by science alone. Explain every day and technological applications of science; evaluate associated personal, social, economic, and environmental implications; and make decisions based on the evaluation of evidence and arguments. Developments of microscopy techniques have enabled IVF treatments to develop. Understand social and ethical issues associated with IVF treatments. Evaluate from the perspective of patients and doctors the methods of treating infertility. Interpret and explain simple diagrams of negative feedback control. Required practical activity 12: investigate how paper chromatography can be used to separate and tell the difference between coloured substances. Students should	adjust the composition of the blood and tissues. These control systems include	
 about fast responses. We will also explore the hormonal system which usually brings about much slower changes. Hormonal coordination is particularly important in reproduction since it controls the menstrual cycle. An understanding of the role of hormones in reproduction has allowed scientists to develop not only contraceptive drugs but also drugs which can increase fertility. Students should be able to recognise expressions given in standard form. Evaluate information around the relationship between obesity and diabetes and make recommendations considering social and ethical issues. Show why issues around contraception cannot be answered by science alone. Explain every day and technological applications of science; evaluate associated personal, social, economic, and environmental implications; and make decisions based on the evaluation of evidence and arguments. Developments of microscopy techniques have enabled IVF treatments to develop. Understand social and ethical issues associated with IVF treatments. Evaluate from the perspective of patients and doctors the methods of treating infertility. Interpret and explain simple diagrams of negative feedback control. Required practical activity 12: investigate how paper chromatography can be used to separate and tell the difference between coloured substances. Students should	receptors which sense changes and effectors that bring about changes. In this section	
 about much slower changes. Hormonal coordination is particularly important in reproduction since it controls the menstrual cycle. An understanding of the role of hormones in reproduction has allowed scientists to develop not only contraceptive drugs but also drugs which can increase fertility. Students should be able to recognise expressions given in standard form. Evaluate information around the relationship between obesity and diabetes and make recommendations considering social and ethical issues. Show why issues around contraception cannot be answered by science alone. Explain every day and technological applications of science; evaluate associated personal, social, economic, and environmental implications; and make decisions based on the evaluation of evidence and arguments. Developments of microscopy techniques have enabled IVF treatments to develop. Understand social and ethical issues associated with IVF treatments. Evaluate from the perspective of patients and doctors the methods of treating infertility. Interpret and explain simple diagrams of negative feedback control. Required practical activity 12: investigate how paper chromatography can be used to separate and tell the difference between coloured substances. Students should	we will explore the structure and function of the nervous system and how it can bring	
 reproduction since it controls the menstrual cycle. An understanding of the role of hormones in reproduction has allowed scientists to develop not only contraceptive drugs but also drugs which can increase fertility. Students should be able to recognise expressions given in standard form. Evaluate information around the relationship between obesity and diabetes and make recommendations considering social and ethical issues. Show why issues around contraception cannot be answered by science alone. Explain every day and technological applications of science; evaluate associated personal, social, economic, and environmental implications; and make decisions based on the evaluation of evidence and arguments. Developments of microscopy techniques have enabled IVF treatments to develop. Understand social and ethical issues associated with IVF treatments. Evaluate from the perspective of patients and doctors the methods of treating infertility. Interpret and explain simple diagrams of negative feedback control. Required practical activity 12: investigate how paper chromatography can be used to separate and tell the difference between coloured substances. Students should	about fast responses. We will also explore the hormonal system which usually brings	
 hormones in reproduction has allowed scientists to develop not only contraceptive drugs but also drugs which can increase fertility. Students should be able to recognise expressions given in standard form. Evaluate information around the relationship between obesity and diabetes and make recommendations considering social and ethical issues. Show why issues around contraception cannot be answered by science alone. Explain every day and technological applications of science; evaluate associated personal, social, economic, and environmental implications; and make decisions based on the evaluation of evidence and arguments. Developments of microscopy techniques have enabled IVF treatments to develop. Understand social and ethical issues associated with IVF treatments. Evaluate from the perspective of patients and doctors the methods of treating infertility. Interpret and explain simple diagrams of negative feedback control. Required practical activity 12: investigate how paper chromatography can be used to separate and tell the difference between coloured substances. Students should		
 drugs but also drugs which can increase fertility. Students should be able to recognise expressions given in standard form. Evaluate information around the relationship between obesity and diabetes and make recommendations considering social and ethical issues. Show why issues around contraception cannot be answered by science alone. Explain every day and technological applications of science; evaluate associated personal, social, economic, and environmental implications; and make decisions based on the evaluation of evidence and arguments. Developments of microscopy techniques have enabled IVF treatments to develop. Understand social and ethical issues associated with IVF treatments. Evaluate from the perspective of patients and doctors the methods of treating infertility. Interpret and explain simple diagrams of negative feedback control. Required practical activity 12 : investigate how paper chromatography can be used to separate and tell the difference between coloured substances. Students should		
 Students should be able to recognise expressions given in standard form. Evaluate information around the relationship between obesity and diabetes and make recommendations considering social and ethical issues. Show why issues around contraception cannot be answered by science alone. Explain every day and technological applications of science; evaluate associated personal, social, economic, and environmental implications; and make decisions based on the evaluation of evidence and arguments. Developments of microscopy techniques have enabled IVF treatments to develop. Understand social and ethical issues associated with IVF treatments. Evaluate from the perspective of patients and doctors the methods of treating infertility. Interpret and explain simple diagrams of negative feedback control. Required practical activity 12: investigate how paper chromatography can be used to separate and tell the difference between coloured substances. Students should		
 Evaluate information around the relationship between obesity and diabetes and make recommendations considering social and ethical issues. Show why issues around contraception cannot be answered by science alone. Explain every day and technological applications of science; evaluate associated personal, social, economic, and environmental implications; and make decisions based on the evaluation of evidence and arguments. Developments of microscopy techniques have enabled IVF treatments to develop. Understand social and ethical issues associated with IVF treatments. Evaluate from the perspective of patients and doctors the methods of treating infertility. Interpret and explain simple diagrams of negative feedback control. Required practical activity 12: investigate how paper chromatography can be used to separate and tell the difference between coloured substances. Students should		
 and make recommendations considering social and ethical issues. Show why issues around contraception cannot be answered by science alone. Explain every day and technological applications of science; evaluate associated personal, social, economic, and environmental implications; and make decisions based on the evaluation of evidence and arguments. Developments of microscopy techniques have enabled IVF treatments to develop. Understand social and ethical issues associated with IVF treatments. Evaluate from the perspective of patients and doctors the methods of treating infertility. Interpret and explain simple diagrams of negative feedback control. Required practical activity 12: investigate how paper chromatography can be used to separate and tell the difference between coloured substances. Students should		
 Show why issues around contraception cannot be answered by science alone. Explain every day and technological applications of science; evaluate associated personal, social, economic, and environmental implications; and make decisions based on the evaluation of evidence and arguments. Developments of microscopy techniques have enabled IVF treatments to develop. Understand social and ethical issues associated with IVF treatments. Evaluate from the perspective of patients and doctors the methods of treating infertility. Interpret and explain simple diagrams of negative feedback control. Required practical activity 12: investigate how paper chromatography can be used to separate and tell the difference between coloured substances. Students should		
 Explain every day and technological applications of science; evaluate associated personal, social, economic, and environmental implications; and make decisions based on the evaluation of evidence and arguments. Developments of microscopy techniques have enabled IVF treatments to develop. Understand social and ethical issues associated with IVF treatments. Evaluate from the perspective of patients and doctors the methods of treating infertility. Interpret and explain simple diagrams of negative feedback control. Required practical activity 12: investigate how paper chromatography can be used to separate and tell the difference between coloured substances. Students should	_	
 associated personal, social, economic, and environmental implications; and make decisions based on the evaluation of evidence and arguments. Developments of microscopy techniques have enabled IVF treatments to develop. Understand social and ethical issues associated with IVF treatments. Evaluate from the perspective of patients and doctors the methods of treating infertility. Interpret and explain simple diagrams of negative feedback control. Required practical activity 12 : investigate how paper chromatography can be used to separate and tell the difference between coloured substances. Students should	, , , , , , , , , , , , , , , , , , , ,	
 make decisions based on the evaluation of evidence and arguments. Developments of microscopy techniques have enabled IVF treatments to develop. Understand social and ethical issues associated with IVF treatments. Evaluate from the perspective of patients and doctors the methods of treating infertility. Interpret and explain simple diagrams of negative feedback control. Required practical activity 12: investigate how paper chromatography can be used to separate and tell the difference between coloured substances. Students should		
 Developments of microscopy techniques have enabled IVF treatments to develop. Understand social and ethical issues associated with IVF treatments. Evaluate from the perspective of patients and doctors the methods of treating infertility. Interpret and explain simple diagrams of negative feedback control. Required practical activity 12: investigate how paper chromatography can be used to separate and tell the difference between coloured substances. Students should 		
 develop. Understand social and ethical issues associated with IVF treatments. Evaluate from the perspective of patients and doctors the methods of treating infertility. Interpret and explain simple diagrams of negative feedback control. Required practical activity 12: investigate how paper chromatography can be used to separate and tell the difference between coloured substances. Students should	-	
 Understand social and ethical issues associated with IVF treatments. Evaluate from the perspective of patients and doctors the methods of treating infertility. Interpret and explain simple diagrams of negative feedback control. Required practical activity 12: investigate how paper chromatography can be used to separate and tell the difference between coloured substances. Students should		
 Evaluate from the perspective of patients and doctors the methods of treating infertility. Interpret and explain simple diagrams of negative feedback control. Required practical activity 12: investigate how paper chromatography can be used to separate and tell the difference between coloured substances. Students should 		
 infertility. Interpret and explain simple diagrams of negative feedback control. Required practical activity 12: investigate how paper chromatography can be used to separate and tell the difference between coloured substances. Students should 		
 Interpret and explain simple diagrams of negative feedback control. Required practical activity 12: investigate how paper chromatography can be used to separate and tell the difference between coloured substances. Students should 		
separate and tell the difference between coloured substances. Students should		
separate and tell the difference between coloured substances. Students should	Required practical activity 12 : investigate how paper chromatography can be used to	

	 Required practical activity 13: analysis and purification of water samples from different sources, including pH, dissolved solids and distillation. Required practical activity 6: plan and carry out an investigation into the effect of a factor on human reaction time. 		
Year 11 HT2	 Inheritance, variation and evolution Students will learn about/ develop skills of: In this section we will discover how the number of chromosomes is halved during meiosis and then combined with new genes from the sexual partner to produce unique offspring. Gene mutations occur continuously and on rare occasions can affect the functioning of the animal or plant. These mutations may be damaging and lead to several genetic disorders or death. Very rarely a new mutation can be beneficial and consequently, lead to increased fitness in the individual. Variation generated by mutations and sexual reproduction is the basis for natural selection; this is how species evolve. An understanding of these processes has allowed scientists to intervene through selective breeding to produce livestock with favoured characteristics. Once new varieties of plants or animals have been produced it is possible to clone individuals to produce larger numbers of identical individuals all carrying the favourable characteristic. Scientists have now discovered how to take genes from one species and introduce them into the genome of another by a process called genetic engineering. Despite the huge potential benefits that this technology can offer, genetic modification remains highly controversial. Model behaviour of chromosomes during meiosis. Appreciate that embryo screening and gene therapy may alleviate suffering but consider the ethical issues which arise. Use the theory of evolution by natural selection in an explanation. Explain the benefits and risks of selective breeding given appropriate information about genetic engineering techniques and to make informed judgements about issues concerning cloning and genetic engineering, including GM crops. Use data to support the theory of evolution. Extract and interpret information from charts, graphs and tables. Appreciate why the fossil record is incomplete.	Fortnightly tests These are tests that are set, under exam conditions in the classroom, every two weeks. These are designed to assess the progress made during the previous two weeks worth of learning. It provides pupils with excellent exam practise and an opportunity to persistently succeed. PPE 1 Three full paper 1 mocks. 50% of total GCSEs What's assessed Biology topics: • Cell Biology; • Organisation; • Infection and response; • Bioenergetics. How it's assessed: Written exam: 1 hour 15 minutes • Foundation • Higher Tier	

I	
Ecology	Maximum marks = 70 marks
Students will learn about/ develop skills of:	which makes up 16.7% of GCSE
The Sun is a source of energy that passes through ecosystems. Materials including	Questions will be assessed using
carbon and water are continually recycled by the living world, being released through	Multiple choice,
respiration of animals, plants and decomposing microorganisms, and taken up by	 structured,
plants in photosynthesis. All species live in ecosystems composed of complex	 closed short answer,
communities of animals and plants dependent on each other and that are adapted to	open response.
conditions, both abiotic and biotic. These ecosystems provide essential services that	
support human life and continued development. To continue to benefit from these	What's assessed Chemistry
services humans need to engage with the environment in a sustainable way. In this	topics:
section we will explore how humans are threatening biodiversity as well as the natural	 Atomic structure and
systems that support it. We will also consider some actions we need to take to ensure	the periodic table;
our future health, prosperity, and well-being.	Bonding,
 Recording first-hand observations of organisms. 	 structure, and the
 Extract and interpret information from charts, graphs and tables. 	properties of matter;
 Interpret graphs used to model predator-prey cycles. 	 Quantitative chemistry;
• Explain how waste, deforestation and global warming have an impact on	 Chemical changes; and
biodiversity.	 Energy changes.
Understand the conflict between the need for cheap available compost to	
increase food production and the need to conserve peat bogs and peatlands	How it's assessed:
as habitats for biodiversity and to reduce carbon dioxide emissions.	Written exam: 1 hour 15
• Evaluate the environmental implications of deforestation.	minutes
Understand that the scientific consensus about global warming and climate	 Foundation
change is based on systematic reviews of thousands of peer reviewed	 Higher Tier
publications.	
• Explain why evidence is uncertain or incomplete in a complex context.	Maximum marks = 70 marks
 Evaluate given information about methods that can be used to tackle 	which makes up 16.7% of GCSE
problems caused by human impacts on the environment.	Questions will be assessed using
 Explain and evaluate the conflicting pressures on maintaining biodiversity 	Multiple choice,
given appropriate information.	• structured,
given appropriate mormation.	 closed short answer,
Required practical activity 7: measure the population size of a common species in a	open response.
habitat. Use sampling techniques to investigate the effect of a factor on the	
distribution of this species.	What's assessed Physics topics:
	• Energy;
	• Electricity;
	Particle model of
	matter;
L	maccory

		• Atomic structure. How it's assessed: Written exam: 1 hour 15 minutes	
		 Foundation Higher Tier Maximum marks = 70 marks which makes up 16.7% of GCSE 	
		 Questions will be assessed using Multiple choice, structured, closed short answer, open response 	
Year 11 HT3	 Forces Students will learn about/ develop skills of: Engineers analyse forces when designing a great variety of machines and instruments, from road bridges and fairground rides to atomic force microscopes. Anything mechanical can be analysed in this way. Recent developments in artificial limbs use the analysis of forces to make movement possible. Students should be able to recall and apply this equation. Students should recognise and be able to use the symbol for proportionality, α Students should be able to use ratios and proportional reasoning to convert units and to compute rates. Measure the effect of distractions on reaction time. Investigate collisions between laboratory trollies using light gates, data loggers or ticker timers to measure and record data. 	Fortnightly tests These are tests that are set, under exam conditions in the classroom, every two weeks. These are designed to assess the progress made during the previous two weeks' worth of learning. It provides pupils with excellent exam practise and an opportunity to persistently succeed.	
	Waves Students will learn about/ develop skills of: Wave behaviour is common in both natural and man-made systems. Waves carry energy from one place to another and can also carry information. Designing comfortable and safe structures such as bridges, houses and music performance halls requires an understanding of mechanical waves. Modern technologies such as		

	 imaging and communication systems show how we can make the most of electromagnetic waves. Students should be able to recall and apply this equation. Required practical activity 18: investigate the relationship between force and extension for a spring. Required practical activity 19: investigate the effect of varying the force on the acceleration of an object of constant mass, and the effect of varying the mass of an object on the acceleration produced by a constant force.		
	 Required practical activity 20: make observations to identify the suitability of apparatus to measure the frequency, wavelength and speed of waves in a ripple tank and waves in a solid and take appropriate measurements. Required practical activity 21: investigate how the amount of infrared radiation absorbed or radiated by a surface depends on the nature of that surface. 		
Year 11 HT4	 Magnetism and electromagnetism Students will learn about/ develop skills of: Electromagnetic effects are used in a wide variety of devices. Engineers make use of the fact that a magnet moving in a coil can produce electric current and also that when current flows around a magnet it can produce movement. It means that systems that involve control or communications can take full advantage of this. The use of models, as in the particle model of matter or the wave models of light and of sound The concept of cause and effect in explaining such links as those between force and acceleration, or between changes in atomic nuclei and radioactive emissions The phenomena of 'action at a distance' and the related concept of the field as the key to analysing electrical, magnetic, and gravitational effects That differences, for example between pressures or temperatures or 	Fortnightly tests These are tests that are set, under exam conditions in the classroom, every two weeks. These are designed to assess the progress made during the previous two weeks worth of learning. It provides pupils with excellent exam practise and an opportunity to persistently succeed.	
	 That differences, for example between pressures of temperatures of electrical potentials, are the drivers of change That proportionality, for example between weight and mass of an object or between force and extension in a spring, is an important aspect of many models in science 	PPE 2 Three full paper 1 mocks. 50% of total GCSEs What's assessed Biology topics:	

That physical laws and models are expressed in mathematical form.	Homeostasis and
	response;
	 Inheritance,
	variation and
	evolution;
	Ecology
	How it's assessed:
	Written exam: 1 hour 15
	minutes
	○ Foundation
	 Higher Tier
	Maximum marks = 70 marks
	which makes up 16.7% of GCSE
	Questions will be assessed using
	Multiple choice,
	 structured,
	 closed short answer,
	open response.
	What's assessed Chemistry
	topics:
	The rate and extent of
	chemical change;
	 Organic chemistry;
	Chemical analysis;
	Chemistry of the
	atmosphere;
	Using resources.
	How it's assessed:
	Written exam: 1 hour 15
	minutes
	 Foundation
	 Higher Tier

		Maximum marks = 70 marks
		which makes up 16.7% of GCSE
		Questions will be assessed using
		Multiple choice,
		• structured,
		 closed short answer,
		open response.
		What's assessed Physics topics:
		• Forces;
		Waves;
		Electromagnetism;
		How it's assessed:
		Written exam: 1 hour 15
		minutes
		 Foundation
		 Higher Tier
		Maximum marks = 70 marks
		which makes up 16.7% of GCSE
		Questions will be assessed using
		Multiple choice,
		• structured,
		 closed short answer,
		open response
	Revision and Exam prep	
Year 11	•	
HT5		

		Assessment(s)	Extra-Curricular Options
Term	Curriculum Content	(assessment title, duration and	(Places to visit; wider reading; clubs
		approx date)	to join)
Year 12 Cu	urriculum Overview:		

	Particles		
Year 12 HT1	Particles introduces students both to the fundamental properties of matter, and to electromagnetic radiation and quantum phenomena. We begin with this topic to provide a new interest and knowledge dimension beyond GCSE. Through a study of these topics, students become aware of the way ideas develop and evolve in physics. They will appreciate the importance of international collaboration in the development of new experiments and theories in this area of fundamental research. Students will learn about/ develop skills of: • Constituents of the atom • Stable and unstable nuclei • Particles, antiparticles and photons • Particle interactions and classification of particles • Quarks and antiquarks • Applications of conservation laws	Ch.1 Particles assessment Ch.2 Quarks and leptons assessment Ch. 6 Forces in equilibrium assessment	Richard Feynman's 6 easy pieces of physics Join the institute of physics (IoP)
	Mechanics - Moments Vectors and their treatment are introduced followed by development of the student's knowledge and understanding of forces, energy and momentum.		
	Students will learn about/ develop skills of: Scalars and vectors Moments 		
	Quantum Physics Building on particle physics, to electromagnetic radiation and quantum phenomena. This culminates in the study of wave-particle duality to have a full understanding of the particle and wave like nature of physics.	Ch.3 Quantum Physics assessment	
Year 12 HT2	 Students will learn about The photoelectric effect Collisions of electrons with atoms Energy levels and photon emission 	Ch.7 on the move assessment Ch.8 Newtons law's of motion assessment	
	Wave-particle duality	PPE 1	

	Vectors and their treatment are introduced followed by development of the student's knowledge and understanding of forces, energy and momentum. Students will learn about/ develop skills of: • Motion along a straight line • Projectile motion		
Year 12 HT3	 Waves and optics GCSE studies of wave phenomena are extended through a development of knowledge of the characteristics, properties, and applications of travelling waves and stationary waves. Topics treated include refraction, diffraction, superposition and interference. Students will learn about/ develop skills of: Progressive waves Longitudinal and transverse waves Principle of superposition of waves and formation of stationary waves Interference Diffraction Refraction at a plane surface Mechanics - Newtons Laws of Motion and Energy Vectors and their treatment are introduced followed by development of the student's knowledge and understanding of forces, energy and momentum. Students will learn about/ develop skills of: Newton's laws of motion Momentum Work, energy and power Conservation of energy 	PPE 1 Ch.4 Waves assessment Ch.9 Forces and momentum assessment Ch.10 Work, energy and power assessment	
Year 12 HT4	Electricity: Electricity builds on and develops earlier study of these phenomena from GCSE. It provides opportunities for the development of practical skills at an early stage in the course and lays the groundwork for later study of the many electrical applications that are important to society. Students will learn about/ develop skills of:	Ch.5 Optics assessment Ch.12 Electric current assessment Ch.11 Materials assessment	Visit Oxford University's School of Material Science.

	Basics of electricity		
	Current–voltage characteristics	PPE 2	
	Resistivity		
	Circuits		
	Potential divider		
	Electromotive force and internal resistance		
	Materials		
	The study of mechanics at Y12 culminates with the study of materials considered in terms		
	of their bulk properties and tensile strength.		
	Students will learn about/ develop skills of:		
	Bulk properties of solids		
	The Young modulus		
	Further Mechanics:		
	The earlier study of mechanics is further advanced through a consideration of circular	Ch.13 DC circuits assessment	
	motion and simple harmonic motion (the harmonic oscillator).		
		Ch.17 Motion in a circle	
	Students will learn about/ develop skills of:	assessment	
HT5	Circular motion		
	Simple harmonic motion (SHM)		
	Simple harmonic systems	Ch.17 Motion in a circle	
	 Forced vibrations and resonance 	assessment	
	Revision		
	Students will revise for their end of year exams covering everything they have learnt in		
	Y12.		
Year 12	Thermal Physics	PPE 2 – end of year exams	
	Building on Y12 mechanics, further mechanics allows the thermal properties of materials,	Ch.19 - Thermal Physics	
	the properties and nature of ideal gases, and the molecular kinetic theory to be studied in	assessment	
	depth.	assessment	
	Students will learn about/ develop skills of:		
	Thermal energy transfer		
Term	Curriculum Content	Assessment(s)	Extra-Curricular Options

		(assessment title, duration and approx date)	(Places to visit; wider reading; club to join)
n Y13 Phys	rriculum Overview: sics students build on their Y12 physics knowledge, practical skills and mathematic skills to de y of physics. At the end of the course, students are ready to continue their studies in physics o Thermal Physics Building on Y12 mechanics, further mechanics allows the thermal properties of materials, the properties and nature of ideal gases, and the molecular kinetic theory to be studied in	velop a complete understanding	
Year 13 HT1	 depth. Students will learn about/ develop skills of: Thermal energy transfer Ideal gases Molecular kinetic theory model Fields and their consequences – Gravitational fields. The concept of field is one of the great unifying ideas in physics. The ideas of gravitation, electrostatics and magnetic field theory are developed within the topic to emphasise this unification. Many ideas from mechanics and electricity from earlier in the course support this and are further developed. Practical applications considered include: planetary and satellite orbits, capacitance and capacitors, their charge and discharge through resistors, and electromagnetic induction. These topics have considerable impact on modern society. Students will learn about/ develop skills of: Fields Gravitational fields Gravitational field strength Gravitational potential Orbits of planets and satellites 	Ch.19 - Thermal Physics assessment Ch.21 - Gravitation fields assessment	
Year 13 HT2	Thermal Physics Building on Y12 mechanics, further mechanics allows the thermal properties of materials, the properties and nature of ideal gases, and the molecular kinetic theory to be studied in depth. Students will learn about/ develop skills of: • Thermal energy transfer • Ideal gases	Ch.20 - Gasses assessment Ch.22 - Electric fields	
	Molecular kinetic theory model Fields and their consequences – Electric fields		

	The concept of field is one of the great unifying ideas in physics. The ideas of gravitation, electrostatics and magnetic field theory are developed within the topic to emphasise this unification. Many ideas from mechanics and electricity from earlier in the course support this and are further developed. Practical applications considered include: planetary and satellite orbits, capacitance and capacitors, their charge and discharge through resistors, and electromagnetic induction. These topics have considerable impact on modern society. Students will learn about/ develop skills of: Coulomb's law Electric field strength Electric potential		
Year 13 HT3	Nuclear Physics – RadioactivityThis section builds on the work of Particles and radiation to link the properties of the nucleus to the production of nuclear power through the characteristics of the nucleus, the properties of unstable nuclei, and the link between energy and mass. Students should become aware of the physics that underpins nuclear energy production and also of the impact that it can have on societyStudents will learn about/ develop skills of: 	Ch.26 - Radioactivity assessment Ch.23 - Capacitors assessment	
Year 13 HT4	Nuclear Physics – Nuclear energy	Ch.27 - Nuclear energy assessment	

This section builds on the work of Particles and radiation to link the properties of the nucleus to the production of nuclear power through the characteristics of the nucleus, the properties of unstable nuclei, and the link between energy and mass. Students should become aware of the physics that underpins nuclear energy production and also of the impact that it can have on society	Ch.24 - Magnetic fields assessment Ch.25 - Electromagnetic induction assessment	
 Students will learn about/ develop skills of: Nuclear instability Nuclear radius Mass and energy Induced fission and safety issues 		
 Fields and their consequences – Magnetic Fields and Electromagnetic Induction The concept of field is one of the great unifying ideas in physics. The ideas of gravitation, electrostatics and magnetic field theory are developed within the topic to emphasise this unification. Many ideas from mechanics and electricity from earlier in the course support this and are further developed. Practical applications considered include: planetary and satellite orbits, capacitance and capacitors, their charge and discharge through resistors, and electromagnetic induction. These topics have considerable impact on modern society. Students will learn about/ develop skills of: Magnetic flux density Moving charges in a magnetic field Magnetic flux and flux linkage Electromagnetic induction Alternating currents The operation of a transformer 		
Turning points in physics: Turning points in physics is intended to enable key concepts and developments in physics to be studied in greater depth than in the core content. Students will be able to appreciate, from historical and conceptual viewpoints, the significance of major paradigm shifts for the subject in the perspectives of experimentation and understanding. Many present-day technological industries are the consequence of these key developments and the topics in the option illustrate how unforeseen technologies can develop from new discoveries. Students will learn about/ develop skills of: • The discovery of the electron	Turning points in physics	

•	Wave-particle duality Special relativity	

Term	Curriculum Content	Assessment(s) (assessment title, duration and approx date)	Extra-Curricular Options (Places to visit; wider reading; clubs to join)
	urriculum Overview:		
how to con knowledge experimen work. In Ye simultanee	•	udents will build upon skills and ill also be expected to carry out ting safe and accurate practical	Royal Society of Chemistry Chemistry Olympiads Playerfm/Chemistry podcasts
•	we teach in Year 12 are: Divised Chamietry Atomic structure, Amount of substance, Bonding and structure, Bodox, Er	orgatics Kinatics Equilibria	Oxford Chemistry reading list
	nysical Chemistry – Atomic structure, Amount of substance, Bonding and structure, Redox, En organic Chemistry – Periodicity, Group 2, Group 7	iergetics, Kinetics, Equilibriu	Oxford Chemistry reading list
	rganic Chemistry – Alkanes, Alkenes, Haloalkanes, Alcohols, Organic analysis		
	Atomic structure		
	Atomic Structure introduces students to the fundamental ideas of chemistry, which are further built upon throughout the specification. Students will appreciate that knowledge and understanding of atomic structure has evolved over time. They will be able to determine the number of fundamental particles in atoms, ions using the periodic table and explain the existence of isotopes in addition to interpreting simple mass spectra of elements and calculating relative atomic mass from isotopic	Atomic Structure Test Amount of Substance Test	
Year 12	abundance. The should also be able to explain how first ionisation energies give		
HT1	evidence for electron configuration in sub shells.	Bonding Test	
	Fundamental Particles		
	Mass number and isotopes	Kinetics Test	
	Electron Configuration		
	Amount of Substance		
	Amount of Substance introduces students to the maths skills that will be heavily		
	required throughout the course. It builds upon basic maths skills learned at GCSE, and		
	gives students a deeper understanding of why these calculations are so important for		

	chemists. In this unit students are also introduced to the first required practical, in		
	which they will be assessed on their experimental and analytical skills.		
	Relative atomic mass + Relative molecular mass		
	The mole and Avogadro's constant		
	The Ideal Gas Equation		
	Empirical and molecular formula		
	 Balanced equations and associated calculations 		
	 RP: Making up a volumetric solution 		
	Bonding		
	Students build upon bonding knowledge and understand the physical and chemical		
	properties of compounds depend on the ways in which the compounds are held		
	together. They also are introduced to theories of bonding and how to deduce the shape		
	of molecules, this unit of study again builds upon students basic knowledge obtained at		
	GCSE level and is crucial to progressing throughout the 2 years of study.		
	Ionic Bonding		
	Covalent Bonding		
	Metallic Bonding		
	Shapes of simple molecules and ions		
	Bond Polarity		
	Forces between molecules		
	Kinetics		
	The study of kinetics enables chemists to determine how a change in conditions affects		
	the speed of a chemical reaction. They also understand and appreciate whilst the		
	reactivity of chemicals is a significant factor in how fast chemical reactions proceed,		
	there are variables that can be manipulated to speed them up or slow them down.		
	Students are also taught how to draw and interpret distribution curves for different		
	temperatures, and are also introduced to another CPAC.		
	Collision Theory		
	Maxwell-Boltzmann distribution		
	Effect of temperature on reaction rate		
	Effect of concentration and pressure		
	Catalysts		
	RP: Investigation of how rate changes with temperature		
	Enorgatics	Energetics Test	
Year 12	Energetics Students will learn how to define the different types of enthalpy changes and		
HT2	understand reactions can be endothermic or exothermic. They will understand how the	Equilibria Test	
112	enthalpy change in a chemical reaction can be measured accurately and appreciate the		
	entrary entry and ppreciate the	Intro to Organic Test	

importance of this va	lue for chemical reactions, as well as be exposed to the		
-	reactions in everyday life.	Alkanes Test	
Enthalpy Cha			
Calorimetry			
Applications	of Hess' Law		
Bond enthalp			
	ment of an enthalpy change		
	Le Chatelier's principle, and Kc		
	ics, a study of equilibria indicates how far reactions will go.		
	e Chatelier's principle can be used to predict the effects of changes		
	sure, and concentration on the yield of a reversible rection; which quences for many industrial processes. The further study of the		
	Lc, considered how the mathematical expression for the		
-	enables us to calculate how an equilibrium yield will be influenced		
-	of the reactants and products		
-	ilibria and Le Chatelier's principle		
	onstant Kc for homogeneous systems		
Introduction to Orga	- .		
_	ted to Organic Chemistry, and will appreciate that there are		
	iverse compounds in living systems and how organic compounds		
-	ingenuity in the vast range of synthetic materials created by		
	ill also be taught how organic compounds are named using the		
	derstand how mechanisms are used to explain reactions.		
Nomenclatur	e		
Reaction med	hanisms		
Isomerism			
Alkanes			
Students will learn ho	w alkanes are the main constituent of crude oil, and the		
importance of this ra	w material for the chemical industries. They will also understand		
the uses of them and	the environmental consequences of them are considered in this		
unit.			
Fractional dis	tillation of crude oil		
	s of alkanes by cracking		
Combustion	of alkanes		
Chlorination	of alkanes		
Year 12 Periodicity		· · · ·	
HT3		PPE 1 (Paper 1)	

	Students will learn about how the periodic table provides chemists with a structured	
	organisation of the known chemical elements from which they can make sense of their	PPE 1 (Paper 2)
	physical and chemical properties. In addition to appreciating the historical development	
	of the periodic table and models of atomic structure providing good examples of how	Periodicity and Redox Test
	scientific ideas and explanations develop over time.	Periodicity and Redox Test
	Classification	Halogenoalkanes Test
		Halogenoalkanes rest
	Physical properties of Period 3 elements	Alkenes Test
	Oxidation, Reduction and Redox Equations	Aikenes Test
	Student will be able to work out the oxidation state of a element in a formula or ion and	
	write half equations identifying oxidation, reduction and redox processes; in addition to	
	learning how to combine half equations to give an overall redox equation	
	Halogenoalkanes	
	Students will learn how to outline the mechanisms involved for these compounds. They	
	will learn how halogenoalkanes are much more reactive than alkanes and their many	
	uses as solvents and in pharmaceuticals.	
	Nucleophilic Substitution	
	Elimination	
	Ozone depletion	
	Alkenes	
	This section covers how the high electron density of the carbon-carbon double bond	
	leads to attach on these molecules by electrophiles. It also covers the mechanism of	
	addition to the double bond and introduces addition polymers, which are commercially	
	important and have many uses in society	
	Structure, bonding and reactivity	
	Addition reactions of alkenes	
	Addition polymers	
	Group 2, the alkaline earth metals	
	Students will learn about the elements in group 2, the trends in the solubilities of the	
	hydroxides and sulphates of these elements and how they are linked to their use. They	
	will understand the applications of these in medicine and agriculture.	Group 2 + Group 7 Test
	Group 7, the halogens	
Year 12	Students will learn about the halogens in Group 7. Trends in their physical and chemical	Alcohols Test
HT4	properties are examined and explained. And the ability of the halogens to behave as	
	oxidising agents and the halides to behave as reducing agents	Organic Analysis Test
	 Trends in properties 	organie Analysis rest
	Uses of chlorine and chlorate (I)	
	RP: Carry out simple test-tube reactions to identify ions	

	Alcohols		
	Students will learn how alcohols have many scientific, medicinal, and industrial uses.		
	Students should also be able to outline the mechanisms for the formation of alcohols		
	from alkenes and from fermentation. They will also be taught chemical tests used to		
	distinguish between products of oxidation of alcohols.		
	Alcohol production		
	Oxidation of alcohols		
	Elimination		
	RP: Distillation of a product from a reaction		
	Organic Analysis		
	Students will learn our understanding or organic molecules, their structure, and the way		
	they react, has been enhanced by organic analysis. This unit considers some of the		
	analytical techniques used by chemists, including the test-tube reactions and		
	spectroscopic techniques		
	 Identification of functional groups by test-tube reactions 		
	Mass spectrometry		
	Infrared spectroscopy		
	RP: Tests for alcohol, aldehyde, alkene, and carboxylic acids		
	Revision		
Year 12	Students will revise for their end of year exams covering everything they have learnt in		
HT5	Y12. This time will also be used to address misconceptions, re-teach topics and catch-up	Mock PPE	
	for students to be ready for their End of Year exams/AS exams; and to be ready to begin		
	Year 2 content after these exams.		
	Thermodynamics (A level)		
	Students will begin Year 2 content by studying thermodynamics which is the further		
	study of energetics and builds upon knowledge and concepts learnt in that unit. It is		
	important in understanding the stability of compounds and why chemical reactions	End of Year PPE 2 (Paper 1)	
Year 12	occur. Students will understand how enthalpy change is linked to entropy change	End of Year PPE 2 (Paper 2)	
HT6	enabling the free-energy change to be calculated.	(),	
	Born Haber cycles		
	Gibbs free energy change and entropy change		
	Optical Isomerism (A level)		
	Students will learn that compounds that contain an asymmetric carbon atom form		
	stereoisomers that differ in their effect on plane polarised light.		Extra Curricular Ontions
Term	Curriculum Content	Assessment(s) (assessment title, duration and approx date)	Extra-Curricular Options (Places to visit; wider reading; clubs to join)
Year 13 Cu	rriculum Overview:		

n Y13 Chei	mistry students build on their Y12 chemistry knowledge, practical skills and mathematic skil	ls to develop a complete	Royal Society of Chemistry
	ding and fluency of chemistry. At the end of the course, students are ready to continue their	studies in chemistry or science	
elated deg	-		Chemistry Olympiads
•	we teach in Year 13 are:		
	nysical Chemistry – Thermodynamics, Acids and Bases, Electrode potentials, Rate equations,		Playerfm/Chemistry podcasts
	organic Chemistry – Period 3 Oxides, Transition Metals, Reactions of Aqueous ions in solution		Outoud Chamister you dive list
- 01	ganic Chemistry – Optical Isomerism, Aldehydes, Ketones, Carboxylic Acids, Esters, Amines, Acids and Bases	Aromatics, Organic Analysis	Oxford Chemistry reading list
Year 13 HT1	 Students will learn how acids and bases are important in domestic, environmental, and industrial contexts. They will understand how acidity in aqueous solutions is caused by hydrogen ions and a logarithmic scale, pH, as been devised to measure acidity. They will appreciate how buffer solutions can be made from partially neutralised weak acids, resist changes in pH and find many important industrial and biological applications. Bronsted-Lowry acid-base equilibria in aqueous solution Definition and determination of pH The ionic product of water, Kw Weak acids and bases, Ka for weak acids pH curves, titrations and indicators Buffer action RP: Investigate how pH changes when a weak acid reacts with a strong base RP: Investigate how pH changes when a strong acid reacts with a weak base Equilibrium constant, Kp for homogeneous systems Students will further study equilibria and consider how the mathematical expression for the equilibrium constant Kp enables us to calculate how an equilibrium yield will be influenced by the partial pressures of reactants and products and the consequences of this on reactions in industry. Aldehydes and Ketones Students learn how to construct mechanisms to show the addition reactions of aldehydes and ketones. Carboxylic acids and esters Students learn how carboxylic acids are weak acids, and the reactions of them with alcohols in the presence of an acid catalyst give an ester. Students also learn how to identify esters and the uses of products of reactions of carboxylic acids in industry, food and fuels.	Acids and Bases Test Equilibrium constant Test Organic Test	
Year 13	Electrode Potentials and Electrochemical cells Students will learn redox reactions take place in electrochemical cells where electrons		
HT2	are transferred from the reducing agent to the oxidising agent indirectly via an external		
	circuit. A potential difference is created that can drive an electric current to do work.	PPE 1 (Paper 1)	

Students will appreciate the applications of electrochemical cells commercially as a portable supply of electricity to power electronic devices, and on a larger scale to power vehicles PPE 1 (Paper 3) Electrode potentials and cells Commercial applications of electrochemical cells RP: Measuring the EMF of an electrochemical cell Properties of Period 3 elements with oxygen are considered. Students will learn the trends of melting points of the oxides in terms of structure and bonding, in addition to the reactions of these oxides with water and the types of products they produce. Acylation Students learn the structures of acid anhydrides, acyl chlorides and amides. As well as the industrial advantages of ethanoic anhydride over ethanoyl chloride in the manufacture of the drug aspirin RP: Preparation of a pure organic liquid Aromatic Chemistry Aromatic Chemistry takes benzene as an example of this type of molecule and students look at the structure of the benzene ring and its substitution reactions. Students should be able to use thermochemical evidence from enthalpies of hydrogenation to account for this extra stability and explain why substation reactions occur in preference to addition reactions Rate equations Determination of rate equation RP: Measuring the rate of reaction by initial rate method RP: Measuring the rate of reaction by continuous monitoring method PP: Measuring the rate of reaction by continuous monitoring method PP: Measuring the rate of reaction by continuous monitoring method RP: Measuring the rate of the structure of these properties linked to their usefunes. In addition to understanding and drawing the shape of complex ions and building upon knowledge of stereois	· · · · · · · · · · · · · · · · · · ·		
power vehicles Electrode potentials and cells Commercial applications of electrochemical cells RP: Measuring the EMF of an electrochemical cell Properties of Period 3 elements with oxygen are considered. Students will learn the trends of melting points of the oxides in terms of structure and bonding, in addition to the reactions of these oxides with water and the types of products they produce. Period 3 Oxides Assessment Period 3 Oxides Assessment Students learn the structures of acid anhydrides, acyl chlorides and amides. As well as the industrial advantages of ethanoic anhydride over ethanoyl chloride in the manufacture of the drug aspirin RP: Preparation of a pure organic Ilquid Rate equations Assessment Rate equations of a pure organic Ilquid Aromatic Chemistry Aromatic Chemistry Aromatic Chemistry takes benzene as an example of this type of molecule and students look at the structure of the benzene ring and its substitution reactions. Students should be able to use thermochemical relationship between rate of reaction and concentration gives information about the mechanism of a reaction that may occur in several steps.			
 Electrode potentials and cells Commercial applications of electrochemical cells RP: Measuring the EMF of an electrochemical cell Properties of Period 3 elements and their oxides The reactions of Period 3 elements with oxygen are considered. Students will learn the trends of melting points of the oxides in terms of structure and bonding, in addition to the reactions of these oxides with water and the types of products they produce. Acylation Students learn the structures of acid anhydrides, acyl chlorides and amides. As well as the industrial advantages of ethanoic anhydride over ethanoyl chloride in the manufacture of the drug aspirin RP: Preparation of a pure organic solid and test its purity RP: Preparation of a pure organic liquid Aromatic Chemistry takes benzene as an example of this type of molecule and students look at the structure of the benzene ring and its substitution reactions. Students should be able to use thermochemical evidence from enthalpies of hydrogenation to account for this extra stability and explain why substation reactions occur in preference to addition reactions Rate equations Determination of rate equation RP: Measuring the rate of reaction by initial rate method RP: Measuring the rate of reaction by continuous monitoring method Transition metals Students will learn how the 3d block consists of the sot useful metals in industry and explain the importance of these rupper lise linked to their usefulness. In addition to understanding and drawing the shape of complex ions and building upon knowledge of streooisomerism. General properties of transition metals 			PPE 1 (Paper 3)
Year 13 Commercial applications of electrochemical cells RP: Measuring the EMF of an electrochemical cell RP: Measuring the EMF of an electrochemical cell RP: Measuring the EMF of an electrochemical cell Assessment Period 3 Divides Assessment Assessment Assessment Year 13 Transition metals Students with oxygen are considered. Students will learn the trends of the oxides in terms of structure and bonding, in addition to the reactions of thes oxides with water and the types of products. they produce. Acylation Students learn the structures of acid anhydrides, acyl chlorides and amides. As well as the industrial advantages of ethanoic anhydride over ethanoyl chloride in the manufacture of the drug aspirin RP: Preparation of a pure organic liquid Aromatic Chemistry RP: Preparation of a pure organic liquid Rate equations Assessment In rate equations, the mathematical relationship between rate of reaction and concentration gives information about the mechanism of a reaction that may occur in several steps. Rate equations Determination of rate equation RP: Measuring the rate of reaction by continuous monitoring method RP: Measuring the rate of reaction by continuous monitoring method RP: Measuring the rate of reaction by continuous monitoring method RP: Measuring the rate of reacti		•	
Year 13• RP: Measuring the EMF of an electrochemical cellAssessmentProperties of Period 3 elements and their oxides The reactions of Period 3 elements with oxygen are considered. Students will learn the trends of melting points of the oxides in terms of structure and bonding, in addition to the reactions of these oxides with water and the types of products they produce. Acylation and Aromatics AssessmentPeriod 3 Oxides AssessmentStudents learn the structures of acid anhydrides, acyl chlorides and amides. As well as the industrial advantages of ethanoic anhydride over ethanoyl chloride in the manufacture of the drug aspirin - RP: Preparation of a pure organic solid and test its purity - RP: Preparation of a pure organic liquid Aromatic Chemistry Aromatic Chemistry takes benzene as an example of this type of molecule and students look at the structure of the benzene ring and its substitution reactions. Students should be able to use thermochemical evidence from enthalpies of hydrogenation to account for this extra stability and explain why substation reaction socur in preference to addition reactions Rate equations, the mathematical relationship between rate of reaction and concentration gives information about the mechanism of a reaction that may occur in several steps. • Reit equations • Determination of rate equation • RP: Measuring the rate of reaction by continuous monitoring methodTransition metals AssessmentYear 13 HT3Fransition metals Students will be to explain the importance of these properties linked to their usefulness. In addition to understanding and drawing the shape of complex ions and building upon knowledge of streosiosmerism. • General properties of transition metalsArste equationsYear 13 HT3Chemistry will be to explain the importance of th			
Properties of Period 3 elements and their oxidesPeriod 3 Oxides AssessmentProperties of Period 3 elements with oxygen are considered. Students will learn the trends of melting points of the oxides in terms of structure and bonding, in addition to the reactions of these oxides with water and the types of products they produce. AcylationPeriod 3 Oxides AssessmentStudents learn the structures of acid anhydrides, acyl chlorides and amides. As well as the industrial advantages of ethanoic anhydride over ethanoyl chloride in the manufacture of the drug aspirin . RP: Preparation of a pure organic solid and test its purity . RP: Preparation of a pure organic liquid Aromatic Chemistry Aromatic Chemistry Aromatic Chemistry takes benzene as an example of this type of molecule and students look at the structure of the benzene ring and its substitution reactions. Students should be able to use thermochemical evidence from enthalpies of hydrogenation to account for this extra stability and explain why substation reactions occur in preference to addition reactions Rate equations In rate equations In rate equations, the mathematical relationship between rate of reaction and concentration gives information about the mechanism of a reaction that may occur in several steps. Rate equationsDetermination of rate equationRP: Measuring the rate of reaction by initial rate method e RP: Measuring the rate of reaction by continuous monitoring method Year 13 HT3Year 13 HT3		 Commercial applications of electrochemical cells 	Electrode potentials
Year 13The reactions of Period 3 elements with oxygen are considered. Students will learn the trends of melting points of the oxides in terms of structure and bonding, in addition to the reactions of these oxides with water and the types of products they produce. AcylationPeriod 3 Oxides AssessmentStudents learn the structures of acid anhydrides, acyl chlorides and amides. As well as the industrial advantages of ethanoic anhydride over ethanoyl chloride in the manufacture of the drug aspirin . RP: Preparation of a pure organic solid and test its purity . RP: Preparation of a pure organic liquid Aromatic Chemistry Aromatic Chemistry Aromatic Chemistry takes benzene as an example of this type of molecule and students look at the structure of the benzene ring and its substitution reactions. Students should be able to use thermochemical evidence from enthalpies of hydrogenation to account for this extra stability and explain why substation reactions occur in preference to addition reactions Rate equations In rate equations, the mathematical relationship between rate of reaction and concentration gives information about the mechanism of a reaction that may occur in several steps. Reserved with the react of reaction by initial rate method the Resuring the rate of reaction by continuous monitoring method Period 3 Oxides AssessmentYear 13 HT3Year 13 HT3		 RP: Measuring the EMF of an electrochemical cell 	Assessment
Year 13 Year 13Year 13 Final Section 2010 Section		Properties of Period 3 elements and their oxides	
the reactions of these oxides with water and the types of products they produce.Acylation and AromaticsAcylationAcylationAssessmentStudents learn the structures of acid anhydrides, acyl chlorides and amides. As well as the industrial advantages of ethanoic anhydride over ethanoyl chloride in the manufacture of the drug aspirinRate equations Assessment-RP: Preparation of a pure organic solid and test its purity - - RP: Preparation of a pure organic liquidRate equations AssessmentAromatic Chemistry Aromatic Chemistry takes benzene as an example of this type of molecule and students look at the structure of the benzene ring and its substitution reactions. Students should be able to use thermochemical evidence from enthalpies of hydrogenation to account for this extra stability and explain why substation reactions occur in preference to addition reactionsIn rate equations, Rate equationsIn rate equations, to paterimination about the mechanism of a reaction that may occur in several steps.Rate equations•RP: Measuring the rate of reaction by initial rate method expressing the rate of reaction by continuous monitoring methodTransition metalsYear 13 HT3Students will be to explain the importance of these properties linked to their usefulness. In addition to understanding and drawing the shape of complex ions and building upon knowledge of stereoisomerism. • General properties of transition metalsTransition metals Assessment		The reactions of Period 3 elements with oxygen are considered. Students will learn the	Period 3 Oxides Assessment
AcylationAssessmentStudents learn the structures of acid anhydrides, acyl chlorides and amides. As well as the industrial advantages of ethanoic anhydride over ethanoyl chloride in the manufacture of the drug aspirinRate equations AssessmentRP: Preparation of a pure organic solid and test its purityRate equations AssessmentRomatic Chemistry Aromatic Chemistry takes benzene as an example of this type of molecule and students look at the structure of the benzene ring and its substitution reactions. Students should be able to use thermochemical evidence from enthalpies of hydrogenation to account for this extra stability and explain why substation reactions occur in preference to addition reactionsRate equationsIn rate equations in rate equations (in reaction about the mechanism of a reaction that may occur in several steps.Rate equationsRe: Measuring the rate of reaction by initial rate method everday life. The characteristics of these elements will be studied in much detail and students will be to explain the importance of these properties linked to their usefulness. In addition to understanding and drawing the shape of complex ions and building upon knowledge of stereoisomerism. General properties of transition metalsTransition metals		trends of melting points of the oxides in terms of structure and bonding, in addition to	
Year 13 Year 13Rate equations AssessmentYear 13 HT3Year 13 Students will bet oxplain the importance of the addition to understanding and drawing the shape of complex loss and building upon knowledge of strenoisomerism. 		the reactions of these oxides with water and the types of products they produce.	Acylation and Aromatics
Year 13Rate equationsRate equations AssessmentYear 13Transition metalsYear 13Transition metalsHTGeneral properties of transition metals		Acylation	Assessment
Year 13 HT3manufacture of the drug aspirin 		Students learn the structures of acid anhydrides, acyl chlorides and amides. As well as	
Year 13Transition metalsYear 13Free Mathematical function of the server serv		the industrial advantages of ethanoic anhydride over ethanoyl chloride in the	Rate equations Assessment
Year 13-RP: Preparation of a pure organic liquidYear 13-RP: Preparation of a pure organic liquidHT3-Students will be to explain the importance of these properties linked to their usefulness. In addition to understanding and drawing the shape of complex links and building upon knowledge of stereoisomerism•General properties of transition metals-•General properties of transition metals-•General properties of transition metals-•Students will be to explain the importance of these properties linked to their usefulness•General properties of transition metals-Organic AssessmentOrganic Assessment-		manufacture of the drug aspirin	
Aromatic Chemistry Aromatic Chemistry takes benzene as an example of this type of molecule and students look at the structure of the benzene ring and its substitution reactions. Students should be able to use thermochemical evidence from enthalpies of hydrogenation to account for this extra stability and explain why substation reactions occur in preference to addition reactions Rate equations In rate equations, the mathematical relationship between rate of reaction and concentration gives information about the mechanism of a reaction that may occur in several steps. Rate equationsRete equationsDetermination of rate equation RP: Measuring the rate of reaction by initial rate methodRP: Measuring the rate of reaction by continuous monitoring methodTransition metalsStudents will learn how the 3d block consists of the most useful metals in industry and everyday life. The characteristics of these elements will be studied in much detail and students will be to explain the importance of these properties linked to their usefulness. In addition to understanding and drawing the shape of complex ions and building upon knowledge of stereoisomerism.General properties of transition metals		 RP: Preparation of a pure organic solid and test its purity 	
Year 13 HT3Aromatic Chemistry takes benzene as an example of this type of molecule and students look at the structure of the benzene ring and its substitution reactions. Students should be able to use thermochemical evidence from enthalpies of hydrogenation to account for this extra stability and explain why substation reactions occur in preference to addition reactions Rate equations In rate equations, the mathematical relationship between rate of reaction and concentration gives information about the mechanism of a reaction that may occur in several steps.• Rate equations • Determination of rate equation • RP: Measuring the rate of reaction by initial rate method • RP: Measuring the rate of reaction by continuous monitoring methodTransition metalsYear 13 HT3Transition metals students will be to explain the importance of these properties linked to their usefulness. In addition to understanding and drawing the shape of complex ions and building upon knowledge of stereoisomerism. • General properties of transition metalsTransition metals Assessment Organic Assessment		 RP: Preparation of a pure organic liquid 	
Year 13 HT3Iook at the structure of the benzene ring and its substitution reactions. Students should be able to use thermochemical evidence from enthalpies of hydrogenation to account for this extra stability and explain why substation reactions occur in preference to addition reactionsIsocord addition reactionsRate equations In rate equations, the mathematical relationship between rate of reaction and concentration gives information about the mechanism of a reaction that may occur in several steps.In rate equations equations of a reaction that may occur in several steps.In rate equations In Pate equation Betwern at the equation of rate equation In Pate equation of the equation by initial rate method In Pate equation by continuous monitoring methodIn Pate equation of the equation of the equation by continuous monitoring methodYear 13Transition metalsStudents will learn how the 3d block consists of the most useful metals in industry and everyday life. The characteristics of these elements will be studied in much detail and students will be to explain the importance of these properties linked to their usefulness. In addition to understanding and drawing the shape of complex ions and building upon knowledge of stereoisomerism. General properties of transition metals Transition metals Assessment		Aromatic Chemistry	
be able to use thermochemical evidence from enthalpies of hydrogenation to account for this extra stability and explain why substation reactions occur in preference to addition reactionsRate equationsRate equationsIn rate equations, the mathematical relationship between rate of reaction and concentration gives information about the mechanism of a reaction that may occur in several steps.• Rate equations• Rate equations• Determination of rate equation • Determination of rate equation • RP: Measuring the rate of reaction by initial rate method • RP: Measuring the rate of reaction by continuous monitoring methodTransition metalsYear 13 HT3Year 13 • General properties of transition metalsStudents will be to explain the importance of these properties linked to their usefulness. In addition to understanding and drawing the shape of complex ions and building upon knowledge of stereoisomerism. • General properties of transition metalsTransition metals		Aromatic Chemistry takes benzene as an example of this type of molecule and students	
for this extra stability and explain why substation reactions occur in preference to addition reactionsRate equationsIn rate equations, the mathematical relationship between rate of reaction and concentration gives information about the mechanism of a reaction that may occur in several steps.• Rate equations• Rete equations• Determination of rate equation• Determination of rate equation• RP: Measuring the rate of reaction by initial rate method• RP: Measuring the rate of reaction by continuous monitoring methodTransition metalsStudents will learn how the 3d block consists of the most useful metals in industry and everyday life. The characteristics of these elements will be studied in much detail and students will be to explain the importance of these properties linked to their usefulness. In addition to understanding and drawing the shape of complex ions and building upon knowledge of stereoisomerism. • General properties of transition metalsTransition metals		look at the structure of the benzene ring and its substitution reactions. Students should	
Addition reactions Rate equations In rate equations, the mathematical relationship between rate of reaction and concentration gives information about the mechanism of a reaction that may occur in several steps. 		be able to use thermochemical evidence from enthalpies of hydrogenation to account	
Rate equationsIn rate equations, the mathematical relationship between rate of reaction and concentration gives information about the mechanism of a reaction that may occur in several steps.In rate equations concentration of rate equation• Rate equations• Determination of rate equation• RP: Measuring the rate of reaction by initial rate method• RP: Measuring the rate of reaction by continuous monitoring method• RP: Measuring the rate of reaction by continuous monitoring methodYear 13 HT3Students will learn how the 3d block consists of the most useful metals in industry and everyday life. The characteristics of these elements will be studied in much detail and students will be to explain the importance of these properties linked to their usefulness. In addition to understanding and drawing the shape of complex ions and building upon knowledge of stereoisomerism. • General properties of transition metalsTransition metals Assessment		for this extra stability and explain why substation reactions occur in preference to	
In rate equations, the mathematical relationship between rate of reaction and concentration gives information about the mechanism of a reaction that may occur in several steps.• Rate equations • Determination of rate equation • RP: Measuring the rate of reaction by initial rate method • RP: Measuring the rate of reaction by continuous monitoring method Transition metals Students will learn how the 3d block consists of the most useful metals in industry and everyday life. The characteristics of these elements will be studied in much detail and students will be to explain the importance of these properties linked to their usefulness. In addition to understanding and drawing the shape of complex ions and building upon knowledge of stereoisomerism. • General properties of transition metalsTransition metals Assessment		addition reactions	
Year 13Transition metals students will be to explain the importance of these properties linked to their usefulness. In addition to understanding and drawing the shape of complex ions and building upon knowledge of stereoisomerism.Transition metals organic AssessmentTransition metals organic Assessment		Rate equations	
Several steps.Rate equations• Determination of rate equation• Determination of rate equation• RP: Measuring the rate of reaction by initial rate method• RP: Measuring the rate of reaction by continuous monitoring method• RP: Measuring the rate of reaction by continuous monitoring method• Transition metalsStudents will learn how the 3d block consists of the most useful metals in industry and everyday life. The characteristics of these elements will be studied in much detail and students will be to explain the importance of these properties linked to their usefulness. In addition to understanding and drawing the shape of complex ions and building upon knowledge of stereoisomerism. • General properties of transition metals• Transition complex ions and building upon knowledge of stereoisomerism.		In rate equations, the mathematical relationship between rate of reaction and	
 Rate equations Determination of rate equation Determination of rate equation RP: Measuring the rate of reaction by initial rate method RP: Measuring the rate of reaction by continuous monitoring method Transition metals Students will learn how the 3d block consists of the most useful metals in industry and everyday life. The characteristics of these elements will be studied in much detail and students will be to explain the importance of these properties linked to their usefulness. In addition to understanding and drawing the shape of complex ions and building upon knowledge of stereoisomerism. General properties of transition metals 		concentration gives information about the mechanism of a reaction that may occur in	
 Determination of rate equation RP: Measuring the rate of reaction by initial rate method RP: Measuring the rate of reaction by continuous monitoring method Transition metals Students will learn how the 3d block consists of the most useful metals in industry and everyday life. The characteristics of these elements will be studied in much detail and students will be to explain the importance of these properties linked to their usefulness. In addition to understanding and drawing the shape of complex ions and building upon knowledge of stereoisomerism. General properties of transition metals 		several steps.	
 RP: Measuring the rate of reaction by initial rate method RP: Measuring the rate of reaction by continuous monitoring method RP: Measuring the rate of reaction by continuous monitoring method Transition metals Students will learn how the 3d block consists of the most useful metals in industry and everyday life. The characteristics of these elements will be studied in much detail and students will be to explain the importance of these properties linked to their usefulness. In addition to understanding and drawing the shape of complex ions and building upon knowledge of stereoisomerism. 		Rate equations	
 RP: Measuring the rate of reaction by continuous monitoring method Transition metals Students will learn how the 3d block consists of the most useful metals in industry and everyday life. The characteristics of these elements will be studied in much detail and students will be to explain the importance of these properties linked to their usefulness. In addition to understanding and drawing the shape of complex ions and building upon knowledge of stereoisomerism. General properties of transition metals 		Determination of rate equation	
Year 13 HT3Transition metals Students will learn how the 3d block consists of the most useful metals in industry and everyday life. The characteristics of these elements will be studied in much detail and students will be to explain the importance of these properties linked to their usefulness. In addition to understanding and drawing the shape of complex ions and building upon knowledge of stereoisomerism. • General properties of transition metalsTransition metals Assessment		RP: Measuring the rate of reaction by initial rate method	
Year 13 HT3Transition metals Students will learn how the 3d block consists of the most useful metals in industry and everyday life. The characteristics of these elements will be studied in much detail and students will be to explain the importance of these properties linked to their usefulness. In addition to understanding and drawing the shape of complex ions and building upon knowledge of stereoisomerism. 		RP: Measuring the rate of reaction by continuous monitoring method	
Year 13 HT3everyday life. The characteristics of these elements will be studied in much detail and students will be to explain the importance of these properties linked to their usefulness. In addition to understanding and drawing the shape of complex ions and building upon knowledge of stereoisomerism. General properties of transition metals Transition metals Assessment			
Year 13students will be to explain the importance of these properties linked to their usefulness. In addition to understanding and drawing the shape of complex ions and building upon knowledge of stereoisomerism.Transition metals Assessment Organic Assessment• General properties of transition metalsOrganic Assessment		Students will learn how the 3d block consists of the most useful metals in industry and	
Year 13 Students will be to explain the importance of these properties linked to their HT3 usefulness. In addition to understanding and drawing the shape of complex ions and building upon knowledge of stereoisomerism. Organic Assessment • General properties of transition metals Organic Assessment		everyday life. The characteristics of these elements will be studied in much detail and	Turnelation models &
building upon knowledge of stereoisomerism. Organic Assessment • General properties of transition metals Organic Assessment	Year 13	students will be to explain the importance of these properties linked to their	i ransition metals Assessment
General properties of transition metals	HT3	usefulness. In addition to understanding and drawing the shape of complex ions and	Organia Accessory
		building upon knowledge of stereoisomerism.	Organic Assessment
Substitution reactions		General properties of transition metals	
		Substitution reactions	

	Shapes of complex ions		
	Formation of coloured ions		
	Variable oxidation states		
	Catalysts		
	Electrophilic Substitution		
	Students should be able to outline the electrophilic mechanisms of nitration and		
	acylation reactions. Students will appreciate how nitration is an important step in		
	synthesis.		
	Amines		
	Students learn how amines are compounds based on ammonia where hydrogen atomcs		
	have been replaced by alkyl or aryl groups. This unit also includes their reactions as		
	nucleophiles		
	Preparation		
	Base properties		
	Nucleophilic properties		
	Polymers		
	Students learn the study of polymers is extended to include condensation polymers.		
	The formation of condensation polymers is studied, together with their properties, uses		
	and problems associated with the reuse or disposal of them		
	Condensation Polymers		
	Biodegradability and disposal of polymers		
	Amino Acids		
	Students learn how amino acids, proteins and DNA are molecules of life. In this unit the		
	structure and bonding in these molecules and the way they interact is studied. This unit		
	has cross-curricular links with A Level Biology.		
	Amino acids		
	Proteins		
	Enzymes		
	• DNA		
	Action of anti-cancer drugs		
	Reactions of ions in aqueous solution	PPE 2 (Paper 1)	
	Students will build upon knowledge obtained in transition metals and now look deeply	PPE 2 (Paper 2)	
Year 13	at the reactions of transition metals in aqueous solution. They will understand how	PPE 2 (Paper 3)	
HT4	these ions can be identified by test-tube reactions in the laboratory. They will also be		
	able to explain the acidity of the ions produced		
	• RP: Carry out simple test-tube reactions to identify transition metal ions in	Reactions of aqueous solution	
	aqueous solution	Assessment	

	Organic Synthesis	
	Students will be able to explain why chemists aim to design processes that do not	Organic Synthesis Assessment
	require a solvent and that use non-hazardous materials; in addition to explain why they	
	aim to design a production with fewer methods and steps to ensure a high percentage	NMR Assessment
	atom economy. And to use reactions in this specification to devise a synthesis map for	
	organic compounds; linking everything they have learned in organic chemistry.	
	Nuclear magnetic resonance spectroscopy	
	Students will have an appreciation that scientists have developed a range of analytical	
	techniques which together enable the structures of new compounds. In addition to	
	understanding how to use NMR spectra to determine the structure and how chemical	
	shifts depend on the molecular environment and use proton and carbon NMR	
	respectively.	
	Chromatography	
	Students will learn how chromatography provides an important method of separating	
	and identifying components in a mixture. Different types of chromatography are used	
	depending on the composition of mixture to be separated	
	 RP: Separation of species by thin-layer chromatography 	
		A-Level Chemistry Paper 1
	Revision	(2 hours)
Year 13	Students will use this term to revise and prepare for their A-Level exams	A-Level Chemistry Paper 2
HT5	Students will use this term to revise and prepare for their A-Lever exams	(2 hours)
		A-Level Chemistry Paper 3
		(90 mins)